Growth differentiation factor 9 (GDF9) is a member of the transforming growth factorβ superfamily and plays an essential role during follicle maturation in mammals. In the present study, the full-length complementary DNA (cDNA) of gdf9 was obtained from Megalobrama amblycephala. The cDNA sequence is 2,061 bp in length with an open reading frame of 1,287 bp encoding 428 amino acid residues. The deduced amino acid sequence shared identities of about 42-86 % with the homologues of other vertebrates. During the early development of embryos, the gdf9 mRNA was detected in zygote with significantly high level and declined sharply by 47 and 87 % at 4 hours post-fertilization (hpf) and 6 hpf and even to an undetectable level through advancing stages. Expression analysis based on quantitative real-time PCR revealed that gdf9 mRNA was mainly expressed in ovary, but much lower levels were also found in some nonovarian tissues. Within the follicle, gdf9 mRNA was localized both in the oocytes and the follicle layer cells by in situ hybridization. During the ovarian cycle, gdf9 mRNA significantly decreased after the previtellogenic stage and became to increase again after the fully grown stage. The results imply that Gdf9 may play critical physiological functions in M. amblycephala early embryonic development and reproduction.
The simulation analysis is an important part of theoretical study on concrete materials. It is a kind of quantitative analysis method of making full use of the computer technology and it has the advantages of high efficiency, safety, fewer limits of environmental conditions, easy change of the time and size etc. Quickly generation of a three-dimensional aggregate structure is a very important prerequisite for the computer simulation analysis of concrete. In this paper, in order to meet the demand of analysis and simulation, based on the technology of Unity3D,the program of three-dimensional aggregate is written, designed to use a large number of existing tools to quickly generate a concrete aggregate model as simple as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.