The study will apply Lyapunov principle to construct a dynamic model for tuberculosis (TB). The Lyapunov principle is commonly used to examine and determine the stability of a dynamic system. To simulate the transmissions of vector-borne diseases and discuss the related health policies effects on vector-borne diseases, the authors combine the multi-agent-based system, social network and compartmental model to develop an epidemic simulation model. In the identity level, the authors use the multi-agent-based system and the mirror identity concept to describe identities with social network features such as daily visits, long-distance movement, high degree of clustering, low degree of separation and local clustering. The research will analyse the complex dynamic mathematic model of TB epidemic and determine its stability property by using the popular Matlab/Simulink software and relative software packages. Facing the current TB epidemic situation, the development of TB and its developing trend through constructing a dynamic bio-mathematical system model of TB is investigated. After simulating the development of epidemic situation with the solution of the SMIR epidemic model, the authors will come up with a good scheme to control epidemic situation to analyse the parameter values of a model that influence epidemic situation evolved. The authors will try to find the quarantining parameters that are the most important factors to control epidemic situation. The SMIR epidemic model and the results via numerical analysis may offer effective prevention with reference to controlling epidemic situation of TB.
In order to simulate the transmissions of vector-borne diseases and discuss the related health policies effects on vector-borne diseases, we using compartmental model to develop an epidemic simulation models. The research will analyze the complex dynamic mathematic model of tuberculosis epidemic and determine its stability property by using the popular Matlab/Simulink software and relative software packages. Facing the current TB epidemic situation, the development of TB and its developing trend through constructing a dynamic bio-mathematic system model of TB is investigated.
This study production of smart house to show the entire system, the use of self-sensing module and the 8051 monocrystal chip processing sensor signals, the success achieved with the measurement of temperature, humidity, illumination, carbon monoxide sensor module. The way transmits by wireless (ZigBee chips) and wired (DAQ signal acquisition device) sensor value send to the server-side carries on remote monitoring and record etc. In accordance with environmental requirements set in the server-side sensing value, using the infrared ray way automatic control load. When necessity also can use the available hand-hold remote control, dual control functions to enable the environment to be safer and the comfortable home life.
In recent years, following malaria, tuberculosis, AIDS, Novel Influenza, and other infectious diseases, have an enormous impact on the entire globe, and directly and profoundly awaken the public, making them cognitive and alert regarding emerging and re-emerging infectious diseases. For some countries or developing regions, tuberculosis is still very serious, however, the public is still unclear TB development and change a variety of factors, therefore, need a model theory of tuberculosis. In view of this, the global epidemic, scientists and statisticians hope to further develop a complete inspection and data acquisition system and is committed to the existing monitoring system, and through the establishment of mathematical models and the spread of infectious diseases dynamics of quantitative methods to facilitate the practical application and control of epidemics, trends and cost-benefit assessment, and help build disease prevention policies, evaluation and revision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.