Atherosclerosis, or hardening of the arteries, is a condition in which plaque, made of cholesterol, fatty substances, cellular waste products, calcium, and fibrin, builds up inside the arteries. A metallic stent is a small mesh tube that is used to treat these narrowed arteries such as coronary artery diseases. The drug-eluting stent has a metallic stent platform coated with drug-polymer mix and has been shown to be superior to its metallic stent counterpart in reducing restenosis. In the past few years, a novel variation of the drug-eluting stent with micro-sized drug reservoirs (depot stent) has been introduced to the market. It allows smart programmable drug delivery with spatial/temporal control and has potential advantages over conventional stents. The drug-polymer mix compound can be altered from one reservoir to the next, allowing a highlycontrolled release of different medications. For example, this depot stent concept can be applied in the renal indication for potential treatment of both renal artery stenosis (upstream) and its associated kidney diseases (downstream) simultaneously. However, the creation of such drug reservoirs on the stent struts inevitably compromises its mechanical integrity. In this study, the effects of these drug reservoirs on stent key clinical attributes were systematically investigated. We developed finite element models to predict the mechanical integrity of a balloon-expandable stent at various stages of its function life such as manufacturing and acute deployment, as well as the stent radial strength and chronic fatigue life. Simulation results show that (1) creating drug reservoirs on a stent strut could impact the stent fatigue resistance to certain degrees; (2) drug reservoirs on the high stress concentration regions led to much greater loss in all key clinical attributes than reservoirs on other locations; (3) reservoir shape change resulted in little differences in all key clinical attributes; and (4) for the same drug loading capacity, larger and fewer reservoirs yielded
Liver cancer or hepatic cancer is a cancer that originates in the liver. It is formed from either the liver itself or from structures within the liver, including blood vessels or the bile duct. Liver cancer can be a life-threatening condition, but it may be cured if found early. Hepatic artery embolization is one of the treatment options involving the injection of substances to reduce the blood flow to cancer cells in the livers of patients with tumors that cannot be removed by surgery; however, this treatment has some limitations. In this paper, we propose a novel nitinol “spherical occlusion device” concept, the first of its kind in the world. Our proposed spherical occlusion device is able to reduce the blood flow to cancer cells by deploying it in the upstream hepatic artery supplying blood to the liver. Moreover, it could carry multiple chemotherapy or radioactive drugs for delivery directly to the target site. Nitinol alloy was chosen as the device material due to its excellent super-elastic property. Computational models were developed to predict the mechanical response of the device during manufacturing and deployment procedures, as well as its hemodynamic behavior. Simulation results showed that the presence of the spherical occlusion device with 14%–27% metal density deployed at the upstream location of the right hepatic artery had significant occlusion effects, with the average blood flow rate cut down by 30%–50%. A pulsed fiber laser and a series of expansions and heat treatments were developed to make the first prototype of the spherical occlusion device for the demonstration of our novel concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.