[1] This paper describes the transition from open channel flow to flow over submerged vegetation using velocity measurements collected with acoustic Doppler velocimetry (ADV) and particle-image velocimetry (PIV). Submerged canopies were constructed from arrays of rigid circular cylinders of height h in water of depth H. Both the canopy density, described by the frontal area per volume (a), and degree of submergence (H/h) were varied. Flow adjustment occurs in three stages. First, velocity begins to decelerate upstream of the canopy, due to a high-pressure region generated at the canopy leading edge, and continues to decelerate within the canopy, due to canopy drag. Rapid flow deceleration within the canopy creates strong vertical flux out through the top of the canopy that extends over a length proportional to the canopy drag length scale, (C D a) À1 , with C D being the canopy drag coefficient. Second, a mixing layer develops at the canopy interface, with the stress at the top of the canopy initially increasing, but eventually reaching a constant value. At this point, the flow within the canopy is fully developed. The length scale for mixing-layer development is related to canopy drag (C D a) and the depth ratio (H/h). In the third stage, the boundary layer above the mixing layer adjusts to the channel boundary conditions. A model is developed to predict the adjustment of vertically averaged velocity within the canopy. Measurements confirm that the flow adjustment is not dependent on canopy length.
The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term to account for the effects of vegetation. The three cases considered for open channels were two-stage rectangular channel with emerged vegetated floodplain, rectangular channel with submerged vegetated corner, and two-stage rectangular channel with submerged vegetated floodplain, respectively. To predict the depth-averaged velocity with submerged vegetated floodplains, we proposed a new method based on a two-layer approach where flow above and through the vegetation layer was described separately. Moreover, further experiments in the two-stage rectangular channel with submerged vegetated floodplain were carried out to verify the results. The analytical solutions of the cases indicated that the corresponding analytical depth-averaged velocity distributions agree well with the simulated and experimental prediction. The analytical solutions of the cases with theoretical foundation and without programming calculation were reasonable and applicable, which were more convenient than numerical simulations. The analytical solutions provided a way for future researches to solve the problems of submerged vegetation and discontinuous phenomenon of depth-averaged velocity at the stage point for compound channels. Understanding the hydraulics of flow in compound channels with vegetated floodplains is very important for supporting the management of fluvial processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.