Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera(1) and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium(2), and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness
BackgroundSunflower is recognized as one of the most important oil plants with strong tolerance to drought in the world. In order to study the response mechanisms of sunflower plants to drought stress, gene expression profiling using high throughput sequencing was performed for seedling leaves and roots (sunflower inbred line R5) after 24 h of drought stress (15% PEG 6000). The transcriptome assembled using sequences of 12 samples was used as a reference.Results805 and 198 genes were identified that were differentially expressed in leaves and roots, respectively. Another 71 genes were differentially expressed in both organs, in which more genes were up-regulated than down-regulated. In agreement with results obtained for other crops or from previous sunflower studies, we also observed that nine genes may be associated with the response of sunflower to drought.ConclusionsThe results of this study may provide new information regarding the sunflower drought response, as well as add to the number of known genes associated with drought tolerance.Electronic supplementary materialThe online version of this article (doi:10.1186/s40529-017-0197-3) contains supplementary material, which is available to authorized users.
Ovate Family Protein1 (OFP1) is a regulator, and it is suspected to be involved in plant growth and development. Meanwhile, Arabidopsis Thaliana Homeobox (ATH1), a BEL1-like homeodomain (HD) transcription factor, is known to be involved in regulating stem growth, flowering time and flower basal boundary development in Arabidopsis. Previous large-scale yeast two-hybrid studies suggest that ATH1 possibly interact with OFP1, but this interaction is yet unverified. In our study, the interaction of OFP1 with ATH1 was verified using a directional yeast two-hybrid system and bimolecular fluorescence complementation (BiFC). Our results also demonstrated that the OFP1-ATH1 interaction is mainly controlled by the HD domain of ATH1. Meanwhile, we found that ATH1 plays the role of transcriptional repressor to regulate plant development and that OFP1 can enhance ATH1 repression function. Regardless of the mechanism, a putative functional role of ATH1-OFP1 may be to regulate the expression of the both the GA20ox1 gene, which is involved in gibberellin (GA) biosynthesis and control of stem elongation, and the Flowering Locus C (FLC) gene, which inhibits transition to flowering. Ultimately, the regulatory functional mechanism of OFP1-ATH1 may be complicated and diverse according to our results, and this work lays groundwork for further understanding of a unique and important protein–protein interaction that influences flowering time, stem development, and flower basal boundary development in plants.
High-density genetic linkage maps are particularly important for quantitative trait loci (QTL) mapping, genome assembly, and marker-assisted selection (MAS) in plants. In this study, a high-density genetic linkage map of sunflower (Helianthus annuus L.) was constructed using an F2 population generated from a cross between Helianthus annuus L. ‘86-1’ and ‘L-1-OL-1’ via specific-locus amplified fragment sequencing (SLAF-seq). After sequence preprocessing, 530.50 M reads (105.60 Gb) were obtained that contained a total of 343,197 SLAFs, of which 39,589 were polymorphic. Of the polymorphic SLAFs, 6,136 were organized into a linkage map consisting of 17 linkage groups (LGs) spanning 2,221.86 cM, with an average genetic distance of 0.36 cM between SLAFs. Based on this high-density genetic map, QTL analysis was performed that focused on four sunflower phenotypic traits: oleic acid content (OAC), plant height (PH), head diameter (HD), and stem diameter (SD). Subsequently, for these four traits eight QTLs were detected that will likely be useful for increasing our understanding of genetic factors underlying these traits and for use in marker-assisted selection (MAS) for future sunflower breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.