Non-obstructive azoospermia (NOA) is one of the most severe forms of male infertility. Its pathophysiology is largely unknown, and few genetic influences have been defined. To identify common variants contributing to NOA in Han Chinese men, we performed a three-stage genome-wide association study of 2,927 individuals with NOA and 5,734 controls. The combined analyses identified significant (P < 5.0 × 10(-8)) associations between NOA risk and common variants near PRMT6 (rs12097821 at 1p13.3: odds ratio (OR) = 1.25, P = 5.7 × 10(-10)), PEX10 (rs2477686 at 1p36.32: OR = 1.39, P = 5.7 × 10(-12)) and SOX5 (rs10842262 at 12p12.1: OR = 1.23, P = 2.3 × 10(-9)). These findings implicate genetic variants at 1p13.3, 1p36.32 and 12p12.1 in the etiology of NOA in Han Chinese men.
Pyrethroid insecticides, the most commonly used insecticides worldwide, are suspected endocrine-disrupting chemicals. But their interactions with hormone receptors are still unclear. The present study intended to evaluate and compare the hormone receptor (estrogen receptor [ER], androgen receptor [AR], and thyroid hormone receptor [TR]) activities of nine pyrethroids (cycloprothrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, etofenprox, fenvalerate, permethrin, and tetramethrin) and their metabolites (3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropne carboxylic acid [DCCA] and 3-phenoxybenzoic acid [3-PBA]) using receptor-mediated luciferase reporter gene assays. Of the 11 compounds tested, four showed very weak ER agonistic activities and six displayed antiestrogenic effects, among which cyhalothrin and DCCA possessed the most potent estrogenic and antiestrogenic activity respectively. Antagonistic effects to AR were found in 7 compounds, with cyfluthrin and deltamethrin exhibiting stronger AR antagonistic capacity. In the TR assay, all of tested chemicals except DCCA showed antagonistic effects. In this study, we provided evidence that a variety of pyrethroids and their metabolites might disrupt the function of multiple nuclear hormone receptors and thus have the potentials to affect the endocrine and the reproductive systems in humans.
MicroRNAs (miRNAs) are small non-coding RNAs (18-25 nt), playing important regulatory roles via interaction with cellular messenger RNAs. The altered expression of miRNAs in specific tissues has been associated with diseases such as cancer and diabetes. We examined the presence of two selected miRNAs (miR-19b and let-7a) in human seminal plasma from fertile men and idiopathic infertile patients with oligozoospermia and non-obstructive azoospermia (NOA) using quantitative real-time PCR. We detected miRNAs in the seminal plasma of humans. The levels of miRNAs in the seminal plasma were reproducible in repeat samples from the same individuals. In addition, we examined the expression patterns of two selected miRNAs in 96 idiopathic infertile males (48 oligozoospermia and 48 NOA) and 48 fertile controls. Another 48 individuals of each group were used for verification. Our data showed that the expression levels of these two miRNAs in the seminal plasma significantly increased in idiopathic infertile males with NOA compared with fertile controls, whereas the expression levels were similar between idiopathic infertile males with oligozoospermia and fertile controls. In conclusion our results indicate that the expression of miR-19b and let-7a in the seminal plasma are reproducible and stable. Aberrant over-expression levels of miR-19b and let-7a may be an indicator of spermatogenic failure.
Microdeletions in the azoospermia factor (AZF) regions on the long arm of the human Y chromosome are known to be associated with spermatogenic failure. Although AZFc is recurrently deleted in azoospermic or oligozoospermic males, no definitive conclusion has been reached for the contribution of different partial AZFc deletions to spermatogenic failure. To further investigate the roles of partial deletions in spermatogenic failure and the relationship between the complete and partial AZFc deletions, we performed deletion typing and Y chromosome haplogrouping in 756 idiopathic infertile Han-Chinese and 391 healthy Han-Chinese. We found that both the b2/b3 partial deletion and the DAZ3/4+CDY1a deletion pattern were associated with spermatogenic failure. We also confirmed that two previously reported fixations, the b2/b3 deletion in haplogroup N1 and the gr/gr deletion in haplogroup Q1. Remarkably, the frequency of the complete AZFc deletion in haplogroup N1 was significantly higher than that in the haplogroup Q1. These results suggest that the b2/b3 partial deletion was associated with a higher risk of complete AZFc deletion compared with the gr/gr partial deletion. Compared with the gr/gr deletion, the b2/b3 deletion presents a shorter distance among recombination targets and longer recombination substrates, which may be responsible for the increased incidence of subsequent recombination events that can lead to the complete AZFc deletion in this Chinese study population. The susceptibility of the b2/b3 partial deletion to the complete AZFc deletion deserves further investigation in larger and diverse populations, especially those with a relatively high frequency of b2/b3 and gr/gr partial deletions.
Our data showed a higher frequency of deletion events in this Han-Chinese population than in populations elsewhere in the world. The classical AZF deletions were the primary genetic factors for spermatogenic failure, while no significant association was found for AZFc subdeletions with sperm concentration. However, the b2/b3 subdeletion was significantly associated with idiopathic male infertility (odds ratio, 2.93; 95% confidence interval 1.34-6.39) (P = 0.005), indicating a potential impairment of male fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.