The intensity acquisition and fluctuation of the signal intensity of the interference source caused by the indoor multipath effect are very great, and there is a problem that the best eigenvalue is difficult to choose. A kind of unsupervised machine learning algorithm is proposed, which can independently identify and select the optimal eigenvalue without relying on the prior information. First, the wave signal filtering is reduced and processed by kernelized principle component analysis (KPCA) algorithm. Then, the eigenvalues are selected and the redundant features are eliminated by adaptive parameter adjustment denoising auto-encoder (APADAE) algorithm. Finally, the feature vectors are classified and identified by Softmax algorithm and the classification process are optimized by the particle swarm optimization (PSO) algorithm. Experimental results of the Smart Cyber-Physical systems show that the algorithm can indirectly improve the accuracy of the source location based on improving the classification accuracy.
Accurate localization of the radio transmitter is an important work in radio management. Previous research is more focused on two-dimensional (2-D) scenarios, but the localization of an unknown radio transmitter under three-dimensional (3-D) scenarios has more practical significance. In this paper, we propose a novel 3-D localization algorithm with received signal strength difference (RSSD) information and factor graph (FG), which is suitable for both line-of-sight (LOS) and non-line-of-sight (NLOS) condition. Considering the stochastic properties of measurement errors caused by the indoor environment, RSSD measurements are processed with mean and variance in the form of Gaussian distribution in the FG framework. A new 3-D RSSD-based FG model is constructed with the relationship between RSSD and location coordinates by local linearization technique. The soft-information computation and iterative process of the proposed model are derived by using the sum-product algorithm. In addition, the impacts of different grid distances and number of signal receivers on positioning accuracy are explored. Finally, the performance of our proposed approach is experimentally evaluated in a real scenario. The results show that the positioning performance of the proposed algorithm is not only superior to the k-nearest neighbors (kNN) algorithm and least square (LS) algorithm, but also it can achieve a mean localization error as low as 1.15 m. Our proposed scheme provides a good solution for the accurate detection of an unknown radio transmitter under indoor 3-D space and has a good application prospect.
Accurate detection of the unknown radio transmitter (URT) is crucial to combat illegal occupation of radio signal resources and protect communication system from harmful signal interference. The fingerprint positioning technique based on received signal strength (RSS) is famous for requiring no extra equipment, antenna arrays, and time synchronization. However, conventional RSS-based fingerprint positioning techniques that utilize K-nearest neighbor (KNN) method are confronted with problems when the positioning target is radio transmitter with unknown emission strength and frequency. Moreover, they not only cannot realize the precise localization of the URT but also only rely on pre-set reference points in the fingerprint database. In this paper, a new KNN-based geo-location approach using received signal strength difference (RSSD) information and virtual reference point is proposed to estimate an URT location. To obtain more accurate RSSD measurements, a RSSD-based filtering method by calculating the Euclidean distance between each sampling RSSD and the average value is devised to establish the fingerprint database. To achieve higher positioning accuracy, we combine KNN technique with the virtual reference (VR) point to propose RSSD-VRKNN algorithm. The simulation results show that the proposed scheme can obtain the best positioning performance compared with the conventional KNN and weighted K-nearest neighbor (WKNN) techniques. The performance and feasibility of our proposed algorithm are verified through extensive experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.