Direct lineage reprogramming involves the remarkable conversion of cellular identity. Single-cell technologies aid in deconstructing the considerable heterogeneity that emerges during lineage conversion. However, lineage relationships are typically lost during cell processing, complicating trajectory reconstruction. Here, we present ‘CellTagging’, a combinatorial cell indexing methodology, permitting the parallel capture of clonal history and cell identity, where sequential rounds of cell labelling enable the construction of multi-level lineage trees. CellTagging and longitudinal tracking of fibroblast to induced endoderm progenitor (iEP) reprogramming reveals two distinct trajectories: one leading to successfully reprogrammed cells, and one leading to a ‘dead-end’ state, paths determined in the earliest reprogramming stages. We find that expression of a putative methyltransferase, Mettl7a1, is associated with the successful reprogramming trajectory, where its addition to the reprogramming cocktail increases the yield of iEPs. Together, these results demonstrate the utility of our lineage tracing method to reveal dynamics of direct reprogramming.
In situ assays of transcription factor (TF) binding are confounded by cellular heterogeneity and represent averaged profiles in complex tissues. Single cell RNA-seq (scRNA-seq) is capable of resolving different cell types based on gene expression profiles, but no technology exists to directly link specific cell types to the binding pattern of TFs in those cell types. Here, we present self-reporting transposons (SRTs) and their use in single cell calling cards (scCC), a novel assay for simultaneously capturing gene expression profiles and mapping TF binding sites in single cells. First, we show how the genomic locations of SRTs can be recovered from mRNA. Next, we demonstrate that SRTs deposited by the piggyBac transposase can be used to map the genome-wide localization of the TFs SP1, through a direct fusion of the two proteins, and BRD4, through its native affinity for piggyBac. We then present the scCC method, which maps SRTs from scRNA-seq libraries, thus enabling concomitant identification of cell types and TF binding sites in those same cells. As a proof-of-concept, we show recovery of cell type-specific BRD4 and SP1 binding sites from cultured cells. Finally, we map Brd4 binding sites in the mouse cortex at single cell resolution, thus establishing a new technique for studying TF biology in situ..
High-throughput single-cell assays increasingly require special consideration in experimental design, sample multiplexing, batch effect removal, and data interpretation. Here, we describe a lentiviral barcode-based multiplexing approach, CellTag Indexing, which uses predefined genetic barcodes that are heritable, enabling cell populations to be tagged, pooled, and tracked over time in the same experimental replicate. We demonstrate the utility of CellTag Indexing by sequencing transcriptomes using a variety of cell types, including long-term tracking of cell engraftment and differentiation in vivo. Together, this presents CellTag Indexing as a broadly applicable genetic multiplexing tool that is complementary with existing single-cell technologies. Electronic supplementary material The online version of this article (10.1186/s13059-019-1699-y) contains supplementary material, which is available to authorized users.
Single-cell technologies have seen rapid advancements in recent years, presenting new analytical challenges and opportunities. These high-throughput assays increasingly require special consideration in experimental design, sample multiplexing, batch effect removal, and data interpretation. Here, we describe a lentiviral barcode-based multiplexing approach, 'CellTag Indexing', where we transduce and label samples that can then be pooled together for downstream experimentation and analysis. By introducing predefined genetic barcodes that are transcribed and readily detected, we can reliably read out sample identity and transcriptional state via single-cell profiling. We validate and demonstrate the utility of CellTag Indexing by sequencing transcriptomes at single-cell resolution using a variety of cell types including mouse pre-B cells, primary mouse embryonic fibroblasts, and human HEK293T cells. A unique feature of CellTag Indexing is that the barcodes are heritable. This enables cell populations to be tagged, pooled and tracked over time within the same experimental replicate, then processed together to minimize unwanted biological and technical variation. We demonstrate this feature of CellTagging in long-term tracking of cell engraftment and differentiation, in vivo, in a mouse model of competitive transplant into the large intestine. Together, this presents CellTag Indexing as a broadly applicable genetic multiplexing tool that is complementary with existing single-cell technologies.
Cardiomyocyte cell death is a major contributing factor to various cardiovascular diseases and is therefore an important target for the design of therapeutic strategies. More recently, stem cell therapies, such as transplantation of embryonic or induced pluripotent stem (iPS) cell-derived cardiomyocytes, have emerged as a promising alternative therapeutic avenue to treating cardiovascular diseases. Nevertheless, survival of these introduced cells is a serious issue that must be solved before clinical application. We and others have identified a small non-coding RNA, microRNA-24 (miR-24), as a pro-survival molecule that inhibits the apoptosis of cardiomyocytes. However, these earlier studies delivered mimics or inhibitors of miR-24 via viral transduction or chemical transfection, where the observed protective role of miR-24 in cardiomyocytes might have partially resulted from its effect on non-cardiomyocyte cells. To elucidate the cardiomyocyte-specific effects of miR-24 when overexpressed, we developed a genetic model by generating a transgenic mouse line, where miR-24 expression is driven by the cardiac-specific Myh6 promoter. The Myh6-miR-24 transgenic mice did not exhibit apparent difference from their wild-type littermates under normal physiological conditions. However, when the mice were subject to myocardial infarction (MI), the transgenic mice exhibited decreased cardiomyocyte apoptosis, improved cardiac function and reduced scar size post-MI compared to their wild-type littermates. Interestingly, the protective effects observed in our transgenic mice were smaller than those from earlier reported approaches as well as our parallelly performed non-genetic approach, raising the possibility that non-genetic approaches of introducing miR-24 might have been mediated via other cell types than cardiomyocytes, leading to a more dramatic phenotype. In conclusion, our study for the first time directly tests the cardiomyocyte-specific role of miR-24 in the adult heart, and may provide insight to strategy design when considering miRNA-based therapies for cardiovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.