Direct lineage reprogramming involves the remarkable conversion of cellular identity. Single-cell technologies aid in deconstructing the considerable heterogeneity that emerges during lineage conversion. However, lineage relationships are typically lost during cell processing, complicating trajectory reconstruction. Here, we present ‘CellTagging’, a combinatorial cell indexing methodology, permitting the parallel capture of clonal history and cell identity, where sequential rounds of cell labelling enable the construction of multi-level lineage trees. CellTagging and longitudinal tracking of fibroblast to induced endoderm progenitor (iEP) reprogramming reveals two distinct trajectories: one leading to successfully reprogrammed cells, and one leading to a ‘dead-end’ state, paths determined in the earliest reprogramming stages. We find that expression of a putative methyltransferase, Mettl7a1, is associated with the successful reprogramming trajectory, where its addition to the reprogramming cocktail increases the yield of iEPs. Together, these results demonstrate the utility of our lineage tracing method to reveal dynamics of direct reprogramming.
Cell identity is governed by the complex regulation of gene expression, represented as gene-regulatory networks1. Here we use gene-regulatory networks inferred from single-cell multi-omics data to perform in silico transcription factor perturbations, simulating the consequent changes in cell identity using only unperturbed wild-type data. We apply this machine-learning-based approach, CellOracle, to well-established paradigms—mouse and human haematopoiesis, and zebrafish embryogenesis—and we correctly model reported changes in phenotype that occur as a result of transcription factor perturbation. Through systematic in silico transcription factor perturbation in the developing zebrafish, we simulate and experimentally validate a previously unreported phenotype that results from the loss of noto, an established notochord regulator. Furthermore, we identify an axial mesoderm regulator, lhx1a. Together, these results show that CellOracle can be used to analyse the regulation of cell identity by transcription factors, and can provide mechanistic insights into development and differentiation.
Serving as the center for metabolism and detoxification, the liver is inherently susceptible to a wide variety of damage imposed by toxins or chemicals. Induction of cell populations with biliary epithelial phenotypes, which include progenitor-like cells and are referred to as liver progenitor cells, is often observed in histopathological examination of various liver diseases in both human patients and animal models and has been implicated in regeneration. However, the tissue dynamics underlying this phenomenon remains largely unclear. We have developed a simple imaging technique to reveal the global and fine-scale architecture of the biliary tract spreading in the mouse liver. Using this novel method, we show that the emergence and expansion of liver progenitor cells actually reflect structural transformation of the intrahepatic biliary tree in mouse liver injury models. The biliary branches expanded their area gradually and contiguously along with the course of chronic injury. Relevant regulatory signals known to be involved in liver progenitor cell regulation, including fibroblast growth factor 7 and tumor necrosis factor-like weak inducer of apoptosis, can modulate the dynamics of the biliary epithelium in different ways. Importantly, the structural transformations of the biliary tree were diverse and corresponded well with the parenchymal injury patterns. That is, when chronic hepatocyte damage was induced in the pericentral area, the biliary branches exhibited an extended structure from the periportal area with apparent tropism toward the distant injured area. Conclusion: The hepatobiliary system possesses a unique and unprecedented structural flexibility and can remodel dynamically and adaptively in response to various injury conditions; this type of tissue plasticity should constitute an essential component to maintain liver homeostasis. (HEPATOLOGY 2015;61:2056-2066
Here, we present CellOracle, a computational tool that integrates single-cell transcriptome and epigenome profiles to infer gene regulatory networks (GRNs), critical regulators of cell identity. Leveraging inferred GRNs, we simulate gene expression changes in response to transcription factor (TF) perturbation, enabling network configurations to be interrogated in silico, facilitating their interpretation. We validate the efficacy of CellOracle to recapitulate known regulatory changes across hematopoiesis, correctly predicting the outcomes of well-characterized TF perturbations. Integrating CellOracle analysis with lineage tracing of direct reprogramming reveals distinct network configurations underlying different reprogramming failure modes.Furthermore, analysis of GRN reconfiguration along successful reprogramming trajectories identifies new factors to enhance target cell yield, uncovering a role for the AP-1 subunit Fos, with the hippo signaling effector, Yap1. Together, these results demonstrate the efficacy of CellOracle to infer and interpret cell-type-specific GRN configurations, at high-resolution, promoting new mechanistic insights into the regulation and reprogramming of cell identity.
Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity.DOI: http://dx.doi.org/10.7554/eLife.15034.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.