Sanguinarine is a benzophenanthridine alkaloid derived from the root of Sanguinaria canadensis. It is known to perform a wide spectrum of biological activities. The aim of this study is to examine the antimicrobial actions of sanguinarine against methicillin-resistant Staphylococcus aureus (MRSA). Sanguinarine antimicrobial activity was assessed by broth dilution method; its mechanism of action was investigated by bacteriolysis, detergent or ATPase inhibitors and transmission electron microscopy were used to monitor the survival characteristics and the changes in bacteria morphology. The activity of sanguinarine against MRSA strains ranged from 3.12 to 6.25 µg/ml, while the minimum inhibitory concentrations of the two reference strains are 3.12 µg/ml and 1.56 µg/ml. The treatment of the cells with sanguinarine induced the release of membrane-bound cell wall autolytic enzymes, which eventually resulted in lysis of the cell. The OD(600s) of the suspensions treated with the combination of Tris-(hydroxymethyl) aminomethane and Triton X-100 with sanguinarine were reduced to 40% and 8%, respectively. Transmission electron microsco-py of MRSA treated with sanguinarine showed alterations in septa formation. The predisposition of lysis and the altered morphology seen by transmission electron microscopy suggest that sanguinarine compromises the cytoplasmic membrane.
The status of the GP130-STAT3 signaling pathway in humans with nonalcoholic fatty liver disease (NAFLD) and its relevance to disease pathogenesis are unknown. The expression of the gp130-STAT3 axis and gp130 cytokine receptors were studied in subjects with varying phenotypes of NAFLD including nonalcoholic steatohepatitis (NASH) and compared with lean and weight-matched controls without NAFLD. Gp130 and its downstream signaling element (Tyk2 and STAT3) expression were inhibited in obese controls whereas they were increased in NAFLD. IL-6 levels were increased in NASH and correlated with gp130 expression (P < 0.01). Palmitate inhibited gp130-STAT3 expression and signaling. IL-6 and palmitate inhibited hepatic insulin signaling via STAT3-dependent and independent mechanisms, respectively. STAT3 overexpression reversed palmitate-induced lipotoxicity by increasing autophagy (ATG7) and decreasing endoplasmic reticulum stress. These data demonstrate that the STAT3 pathway is activated in NAFLD and can worsen insulin resistance while protecting against other lipotoxic mechanisms of disease pathogenesis.
Tetrandrine (TET) is a bis-benzylisoquinoline alkaloid derived from the radix of Stephania tetrandra S. Moore. TET performs a wide spectrum of biological activities. The radix of S. tetrandrae has been used traditionally in Asia, including Korea, to treat congestive circulatory disorders and inflammatory diseases. The aim of this study was to examine the mechanism of antibacterial activity of tetrandrine against Staphylococcus aureus. The mechanism was investigated by studying the effects of TET in combination with detergent or membrane potential un-couplers. In addition, the direct involvement of peptidoglycan (PGN) was assessed in titration assays. TET activity against S. aureus was 125-250 μg/mL, and the minimum inhibitory concentration (MIC) of the two reference strains was 250 μg/mL. The OD(600) of each suspension treated with a combination of ethylenediaminetetraacetic acid (EDTA), tris(hydroxymethyl) aminomethane (TRIS), and Triton X-100 (TX) with TET (0.25×MIC) had been reduced from 43% to 96%. Additional structure-function studies on the antibacterial activity of TET in combination with other agents may lead to the discovery of more effective antibacterial agents.
Intracellular drug delivery of layered double hydroxide (LDH) nanocarriers have been examined in human osteosarcoma Saos-2 cell culture line by both electron and confocal microscopies. For transmission electron microsopic (TEM) study, LDHs and anticancer drug, methotrexate (MTX) loaded LDHs were synthesized and the particle size was controlled. From the scanning electron microscopic (SEM) studies, morphologies of LDH nanoparticle and its MTX intercalated form were proven to be platelike hexagonal with an average size of approximately 150 nm. In order to understand the cellular penetration behavior, both nanoparticles were treated to human osteosarcoma Saos-2 cell culture lines and the cellular uptake pattern with respect to incubation time was observed by TEM and SEM. We observed that the nanoparticles are attached at the cellular membrane at first and then internalized into the cells via endocytosis within 1 h. Then are located in the intracellular vacuole (endosome). In order to examine the intracellular drug delivery mechanism of LDH nanoparticles, fluorescein 5-isothiocyanate (FITC) labeled MTX was intercalated into LDH and treated on Saos-2 cells. Laser scanning confocal microscopic studies revealed that the FITC-MTX molecules were first internalized with LDH nanocarriers via endocytosis, and located in endosome to deliver loaded drug to target cellular organ. It was, therefore, concluded that LDH could play a role as drug delivery nanocarriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.