The usage of reovirus has reached phase II and III clinical trials in human cancers. However, this is the first study to report the oncolytic effects of reovirus in veterinary oncology, focusing on canine mast cell tumor (MCT), the most common cutaneous tumor in dogs. As human and canine cancers share many similarities, we hypothesized that the oncolytic effects of reovirus can be exploited in canine cancers. The objective of this study was to determine the oncolytic effects of reovirus in canine MCT in vitro, in vivo and ex vivo. We demonstrated that MCT cell lines were highly susceptible to reovirus as indicated by marked cell death, high production of progeny virus and virus replication. Reovirus induced apoptosis in the canine MCT cell lines with no correlation to their Ras activation status. In vivo studies were conducted using unilateral and bilateral subcutaneous MCT xenograft models with a single intratumoral reovirus treatment and apparent reduction of tumor mass was exhibited. Furthermore, cell death was induced by reovirus in primary canine MCT samples in vitro. However, canine and murine bone marrow-derived mast cells (BMCMC) were also susceptible to reovirus. The combination of these results supports the potential value of reovirus as a therapy in canine MCT but warrants further investigation on the determinants of reovirus susceptibility.
Reovirus is a potent oncolytic virus in many human neoplasms that has reached phase II and III clinical trials. Our laboratory has previously reported the oncolytic effects of reovirus in canine mast cell tumour (MCT). In order to further explore the potential of reovirus in veterinary oncology, we tested the susceptibility of reovirus in 10 canine lymphoma cell lines. Reovirus-induced cell death, virus replication and infectivity were confirmed in four cell lines with variable levels of susceptibility. The level of Ras activation varied among the cell lines with no correlation with reovirus susceptibility. Reovirus-susceptible cell lines underwent apoptosis as proven by propidium iodide (PI) staining, Annexin V-FITC/PI assay, cleavage of PARP and inhibition of cell death by caspase inhibitor. A single intratumoral injection of reovirus suppressed the growth of canine lymphoma subcutaneous tumour in NOD/SCID mice. Unlike canine MCT, canine lymphoma is less susceptible to reovirus.
Oncolytic virotherapy is a new strategy for cancer treatment for humans and dogs. Reovirus has been proven to be a potent oncolytic virus in human medicine. Our laboratory has previously reported that canine mast cell tumor and canine lymphoma were susceptible to reovirus. In this study, canine solid tumor cell lines (mammary gland tumor, osteosarcoma and malignant melanoma) were tested to determine their susceptibility towards reovirus. We demonstrated that reovirus induces more than 50% cell death in three canine mammary gland tumors and one canine malignant melanoma cell line. The reovirus-induced cell death occurred via the activation of caspase 3. Ras activation has been shown to be one of the important mechanisms of reovirus-susceptibility in human cancers. However, Ras activation was not related to the reovirus-susceptibility in canine solid tumor cell lines, which was similar to reports in canine mast cell tumor and canine lymphoma. The results of this study highly suggest that canine mammary gland tumor and canine malignant melanoma are also potential candidates for reovirus therapy in veterinary oncology.
Oncolytic virotherapy is a novel treatment involving replication-competent virus in the elimination of cancer. We have previously reported the oncolytic effects of reovirus in various canine cancer cell lines. This study aims to establish the safety profile of reovirus in dogs with spontaneously occurring tumours and to determine a recommended dosing regimen. Nineteen dogs with various tumours, mostly of advanced stages, were treated with reovirus, ranging from 1.0 × 10 to 5.0 × 10 TCID given as intratumour injection (IT) or intravenous infusion (IV) daily for up to 5 consecutive days in 1 or multiple treatment cycles. Adverse events (AEs) were graded according to the Veterinary Cooperative Oncology Group- Common Terminology Criteria for Adverse Events (VCOG-CTCAE) v1.1 guidelines. Viral shedding, neutralizing anti-reovirus antibody (NARA) production and immunohistochemical (IHC) detection of reovirus protein in the tumours were also assessed. AE was not observed in most dogs and events were limited to Grade I or II fever, vomiting, diarrhoea and inflammation of the injected tumour. No infectious virus was shed and all dogs had elevated NARA levels post-treatment. Although IHC results were only available in 6 dogs, 4 were detected positive for reovirus protein. In conclusion, reovirus is well-tolerated and can be given safely to tumour-bearing dogs according to the dosing regimen used in this study without significant concerns of viral shedding. Reovirus is also potentially effective in various types of canine tumours.
Oncolytic virotherapy using reovirus is a promising new anti-cancer treatment with potential for use in humans and dogs. Because reovirus monotherapy shows limited efficacy in human and canine cancer patients, the clinical development of a combination therapy is necessary. To identify candidate components of such a combination, we screened a 285-compound drug library for those that enhanced reovirus cytotoxicity in a canine melanoma cell line. Here, we show that exposure to an inhibitor of the ataxia telangiectasia mutated protein (ATM) enhances the oncolytic potential of reovirus in five of six tested canine melanoma cell lines. Specifically, the ATM inhibitor potentiated reovirus replication in cancer cells along with promoting the lysosomal activity, resulting in an increased proportion of caspase-dependent apoptosis and cell cycle arrest at G2/M compared to those observed with reovirus alone. Overall, our study suggests that the combination of reovirus and the ATM inhibitor may be an attractive option in cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.