Coronaviruses (CoVs) consist of six strains, and the severe acute respiratory syndrome coronavirus (SARS-CoV), newly found coronavirus (SARS-CoV-2) has rapidly spread leading to a global outbreak. The ferret ( Mustela putorius furo) serves as a useful animal model for studying SARS-CoV/SARS-CoV-2 infection and developing therapeutic strategies. A holistic approach for distinguishing differences in gene signatures during disease progression is lacking. The present study discovered gene expression profiles of short-term (3 days) and long-term (14 days) ferret models after SARS-CoV/SARS-CoV-2 infection using a bioinformatics approach. Through Gene Ontology (GO) and MetaCore analyses, we found that the development of stemness signaling was related to short-term SARS-CoV/SARS-CoV-2 infection. In contrast, pathways involving extracellular matrix and immune responses were associated with long-term SARS-CoV/SARS-CoV-2 infection. Some highly expressed genes in both short- and long-term models played a crucial role in the progression of SARS-CoV/SARS-CoV-2 infection, including DPP4, BMP2, NFIA, AXIN2, DAAM1, ZNF608, ME1, MGLL, LGR4, ABHD6 , and ACADM. Meanwhile, we revealed that metabolic, glucocorticoid, and reactive oxygen species-associated networks were enriched in both short- and long-term infection models. The present study showed alterations in gene expressions from short-term to long-term SARS-CoV/SARS-CoV-2 infection. The current result provides an explanation of the pathophysiology for post-infectious sequelae and potential targets for treatment.
The complexity of breast cancer includes many interacting biological processes, and proteasome alpha (PSMA) subunits are reported to be involved in many cancerous diseases, although the transcriptomic expression of this gene family in breast cancer still needs to be more thoroughly investigated. Consequently, we used a holistic bioinformatics approach to study the PSMA genes involved in breast cancer by integrating several well-established high-throughput databases and tools, such as cBioPortal, Oncomine, and the Kaplan–Meier plotter. Additionally, correlations of breast cancer patient survival and PSMA messenger RNA expressions were also studied. The results demonstrated that breast cancer tissues had higher expression levels of PSMA genes compared to normal breast tissues. Furthermore, PSMA2, PSMA3, PSMA4, PSMA6, and PSMA7 showed high expression levels, which were correlated with poor survival of breast cancer patients. In contrast, PSMA5 and PSMA8 had high expression levels, which were associated with good prognoses. We also found that PSMA family genes were positively correlated with the cell cycle, ubiquinone metabolism, oxidative stress, and immune response signaling, including antigen presentation by major histocompatibility class, interferon-gamma, and the cluster of differentiation signaling. Collectively, these findings suggest that PSMA genes have the potential to serve as novel biomarkers and therapeutic targets for breast cancer. Nevertheless, the bioinformatic results from the present study would be strengthened with experimental validation in the future by prospective studies on the underlying biological mechanisms of PSMA genes and breast cancer.
Monkeypox virus (MPV) is a smallpox-like virus belonging to the genus Orthopoxvirus of the family Poxviridae. Unlike smallpox with no animal reservoir identified and patients suffering from milder symptoms with less mortality, several animals were confirmed to serve as natural hosts of MPV. The reemergence of a recently reported monkeypox epidemic outbreak in nonendemic countries has raised concerns about a global outburst. Since the underlying mechanism of animal-to-human transmission remains largely unknown, comprehensive analyses to discover principal differences in gene signatures during disease progression have become ever more critical. In this study, two MPV-infected in vitro models, including human immortal epithelial cancer (HeLa) cells and rhesus monkey (Macaca mulatta) kidney epithelial (MK2) cells, were chosen as the two subjects to identify alterations in gene expression profiles, together with co-regulated genes and pathways that are affected during monkeypox disease progression. Using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and MetaCore analyses, we discovered that elevated expression of genes associated with interleukins (ILs), G protein-coupled receptors (GPCRs), heat shock proteins (HSPs), Toll-like receptors (TLRs), and metabolic-related pathways play major roles in disease progression of both monkeypox-infected monkey MK2 and human HeLa cell lines. Interestingly, our analytical results also revealed that a cluster of differentiation 40 (CD40), plasmin, and histamine served as major regulators in the monkeypox-infected monkey MK2 cell line model, while interferons (IFNs), macrophages, and neutrophil-related signaling pathways dominated the monkeypox-infected human HeLa cell line model. Among immune pathways of interest, apart from traditional monkeypox-regulated signaling pathways such as nuclear factor- (NF-κB), mitogen-activated protein kinases (MAPKs), and tumor necrosis factors (TNFs), we also identified highly significantly expressed genes in both monkey and human models that played pivotal roles during the progression of monkeypox infection, including CXCL1, TNFAIP3, BIRC3, IL6, CCL2, ZC3H12A, IL11, CSF2, LIF, PTX3, IER3, EGR1, ADORA2A, and DUOX1, together with several epigenetic regulators, such as histone cluster family gene members, HIST1H3D, HIST1H2BJ, etc. These findings might contribute to specific underlying mechanisms related to the pathophysiology and provide suggestions regarding modes of transmission, post-infectious sequelae, and vaccine development for monkeypox in the future.
The complexity of breast cancer includes many interacting biological processes that make it difficult to find appropriate therapeutic treatments. Therefore, identifying potential diagnostic and prognostic biomarkers is urgently needed. Previous studies demonstrated that 26S proteasome delta subunit, non-ATPase (PSMD) family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcriptional expressions of PSMD family genes in breast cancer still remain largely unexplored. Consequently, we used a holistic bioinformatics approach to explore PSMD genes involved in breast cancer patients by integrating several high-throughput databases, including The Cancer Genome Atlas (TCGA), cBioPortal, Oncomine, and Kaplan-Meier plotter. These data demonstrated that PSMD1, PSMD2, PSMD3, PSMD7, PSMD10, PSMD12, and PSMD14 were expressed at significantly higher levels in breast cancer tissue compared to normal tissues. Notably, the increased expressions of PSMD family genes were correlated with poor prognoses of breast cancer patients, which suggests their roles in tumorigenesis. Meanwhile, network and pathway analyses also indicated that PSMD family genes were positively correlated with ubiquinone metabolism, immune system, and cell-cycle regulatory pathways. Collectively, this study revealed that PSMD family members are potential prognostic biomarkers for breast cancer progression and possible promising clinical therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.