Coherence and interestingness are two criteria for evaluating the performance of melody harmonization, which aims to generate a chord progression from a symbolic melody. In this study, we apply the concept of orderless NADE, which takes the melody and its partially masked chord sequence as the input of the BiLSTM-based networks to learn the masked ground truth, to the training process. In addition, the class weights are used to compensate for some reasonable chord labels that are rarely seen in the training set. Consistent with the stochasticity in training, blocked Gibbs sampling with proper numbers of masking/generating loops is used in the inference phase to progressively trade the coherence of the generated chord sequence off against its interestingness. The experiments were conducted on a dataset of 18,005 melody/chord pairs. Our proposed model outperforms the state-of-the-art system MTHarmonizer in five of six different objective metrics based on chord/melody harmonicity and chord progression. The subjective test results with more than 100 participants also show the superiority of our model.
This paper reviews the NTIRE 2020 Challenge on Non-Homogeneous Dehazing of images (restoration of rich details in hazy image). We focus on the proposed solutions and their results evaluated on NH-Haze, a novel dataset consisting of 55 pairs of real haze free and nonhomogeneous hazy images recorded outdoor. NH-Haze is the first realistic nonhomogeneous haze dataset that provides ground truth images. The nonhomogeneous haze has been produced using a professional haze generator that imitates the real conditions of haze scenes. 168 participants registered in the challenge and 27 teams competed in the final testing phase. The proposed solutions gauge the state-of-the-art in image dehazing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.