In this paper, we propose a modulation scheme for a network-coded bi-directional relaying (NBR) system over an asymmetric channel, which means that the qualities of the relay channel (the link between the BS and RS) and access channel (the link between the RS and MS) are not identical. The proposed scheme employs a dual constellation in such a way that the RS broadcasts the network-coded symbols modulated by two different constellations to the MS and BS over two consecutive transmission intervals. We derive an upper bound on the average bit error rate (BER) of the proposed scheme, and compare it with the hybrid constellation-based modulation scheme proposed for the asymmetric bi-directional link. Furthermore, we investigate the channel utilization of the existing bi-directional relaying schemes as well as the NBR system with the proposed dual constellation diversity-based modulation (DCD). From our simulation results, we show that the DCD gives better average BER performance about 3.5~4dB when Eb/N0 is equal to 10 -2 , while maintaining the same spectral efficiency as the existing NBR schemes over the asymmetric bi-directional relaying channel.
Key Words : Interference-limited system, amplify-and-forward relaying, outage probability, average bit error rate
ABSTRACTIn this paper, we consider a 2-hop relay system where both the relay and destination nodes suffer from the arbitrary number of co-channel interferers. More specifically, assuming that the relay and access channels as well as interference channels are all subject to Rayleigh fading, we derive an exact closed-form expression for outage probability of the amplify-and-forward (AF) relay system, and furthermore compute its upper and lower bounds.Based on these bounds, we derive the upper and lower bounds on the average bit error rate (BER) of the AF relay system. We also confirm the accuracy of our derivation by investigating the performance gap between the performance bounds under consideration and simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.