Experimental evidence of the optimized interface engineering effects in MoS2 transistors is demonstrated. The MoS2/Y2O3/HfO2 stack offers excellent interface control. Results show that HfO2 layer can be scaled down to 9 nm, yet achieving a near-ideal sub-threshold slope (65 mv/dec) and the highest saturation current (526 μA/μm) of any MoS2 transistor reported to date.
Resistive random access memory (ReRAM) has been considered the most promising next-generation nonvolatile memory. In recent years, the switching behavior has been widely reported, and understanding the switching mechanism can improve the stability and scalability of devices. We designed an innovative sample structure for in situ transmission electron microscopy (TEM) to observe the formation of conductive filaments in the Pt/ZnO/Pt structure in real time. The corresponding current-voltage measurements help us to understand the switching mechanism of ZnO film. In addition, high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) have been used to identify the atomic structure and components of the filament/disrupted region, determining that the conducting paths are caused by the conglomeration of zinc atoms. The behavior of resistive switching is due to the migration of oxygen ions, leading to transformation between Zn-dominated ZnO(1-x) and ZnO.
The Forming phenomenon is observed via in situ transmission electron microscopy in the Ag/Ta O /Pt system. The device is switched to a low-resistance state as the dual filament is connected to the electrodes. The results of energy dispersive spectrometer and electron energy loss spectroscopy analyses demonstrate that the filament is composed by a stack of oxygen vacancies and Ag metal.
Formation mechanisms of dendrite structures have been extensively explored theoretically, and many theoretical predictions have been validated for micro-or macroscale dendrites. However, it is challenging to determine whether classical dendrite growth theories are applicable at the nanoscale due to the lack of detailed information on the nanodendrite growth dynamics. Here, we study iron oxide nanodendrite formation using liquid cell transmission electron microscopy (TEM). We observe "seaweed"-like iron oxide nanodendrites growing predominantly in two dimensions on the membrane of a liquid cell. By tracking the trajectories of their morphology development with high spatial and temporal resolution, it is possible to explore the relationship between the tip curvature and growth rate, tip splitting mechanisms, and the effects of precursor diffusion and depletion on the morphology evolution. We show that the growth of iron oxide nanodendrites is remarkably consistent with the existing theoretical predictions on dendritic morphology evolution during growth, despite occurring at the nanoscale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.