High-performance MoS transistors are developed using atomic hexagonal boron nitride as a tunneling layer to reduce the Schottky barrier and achieve low contact resistance between metal and MoS . Benefiting from the ultrathin tunneling layer within 0.6 nm, the Schottky barrier is significantly reduced from 158 to 31 meV with small tunneling resistance.
Experimental evidence of the optimized interface engineering effects in MoS2 transistors is demonstrated. The MoS2/Y2O3/HfO2 stack offers excellent interface control. Results show that HfO2 layer can be scaled down to 9 nm, yet achieving a near-ideal sub-threshold slope (65 mv/dec) and the highest saturation current (526 μA/μm) of any MoS2 transistor reported to date.
Here we report InAs nanowire (NW) near-infrared photodetectors having a detection wavelength up to ∼1.5 μm. The single InAs NW photodetectors displayed minimum hysteresis with a high Ion/Ioff ratio of 10(5). At room temperature, the Schottky-Ohmic contacted photodetectors had an external photoresponsivity of ∼5.3 × 10(3) AW(-1), which is ∼300% larger than that of Ohmic-Ohmic contacted detectors (∼1.9 × 10(3) AW(-1)). A large enhancement in photoresponsivity (∼300%) had also been achieved in metal Au-cluster-decorated InAs NW photodetectors due to the formation of Schottky junctions at the InAs/Au cluster contacts. The photocurrent decreased when the photodetectors were exposed to ambient atmosphere because of the high surface electron concentration and rich surface defect states in InAs NWs. A theoretical model based on charge transfer and energy band change is proposed to explain this observed performance. To suppress the negative effects of surface defect states and atmospheric molecules, new InAs NW photodetectors with a half-wrapped top-gate had been fabricated by using 10 nm HfO2 as the top-gate dielectric.
Abstract2D materials, such as graphene, transition metal dichalcogenides, and black phosphorus, have become the most potential semiconductor materials in the field of optoelectronic devices due to their extraordinary properties. Owing to the layer‐dependent and appropriately sized bandgaps, photodetectors based on various 2D materials are designed and manufactured rationally. Utilizing the unique properties of 2D materials, many surprising physical phenomena of junctions based on 2D materials can be obtained after different 2D materials are stacked together. This makes heterojunctions more popular than 2D materials themselves, and the design of 2D materials for human beings is easier than ever. In this review, recent progress in optoelectronic applications based on 2D materials and their heterojunctions is summarized and discussed.
Photodetectors built from conventional bulk materials such as silicon, III-V or II-VI compound semiconductors are one of the most ubiquitous types of technology in use today. The past decade has witnessed a dramatic increase in interest in emerging photodetectors based on perovskite materials driven by the growing demands for uncooled, low-cost, lightweight, and even flexible photodetection technology. Though perovskite has good electrical and optical properties, perovskite-based photodetectors always suffer from nonideal quantum efficiency and high-power consumption. Joint manipulation of electrons and photons in perovskite photodetectors is a promising strategy to improve detection efficiency. In this review, electrical and optical characteristics of typical types of perovskite photodetectors are first summarized. Electrical manipulations of electrons in perovskite photodetectors are discussed. Then, artificial photonic nanostructures for photon manipulations are detailed to improve light absorption efficiency. By reviewing the manipulation of electrons and photons in perovskite photodetectors, this review aims to provide strategies to achieve high-performance photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.