Abstract2D materials, such as graphene, transition metal dichalcogenides, and black phosphorus, have become the most potential semiconductor materials in the field of optoelectronic devices due to their extraordinary properties. Owing to the layer‐dependent and appropriately sized bandgaps, photodetectors based on various 2D materials are designed and manufactured rationally. Utilizing the unique properties of 2D materials, many surprising physical phenomena of junctions based on 2D materials can be obtained after different 2D materials are stacked together. This makes heterojunctions more popular than 2D materials themselves, and the design of 2D materials for human beings is easier than ever. In this review, recent progress in optoelectronic applications based on 2D materials and their heterojunctions is summarized and discussed.
Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction.
"One key to one lock" hybrid sensor configuration is rationally designed and demonstrated as a direct effective route for the target-gas-specific, highly sensitive, and promptly responsive chemical gas sensing for room temperature operation in a complex ambient background. The design concept is based on three criteria: (i) quasi-one-dimensional metal oxide nanostructures as the sensing platform which exhibits good electron mobility and chemical and thermal stability; (ii) deep enhancement-mode field-effect transistors (E-mode FETs) with appropriate threshold voltages to suppress the nonspecific sensitivity to all gases (decouple the selectivity and sensitivity away from nanowires); (iii) metal nanoparticle decoration onto the nanostructure surface to introduce the gas specific selectivity and sensitivity to the sensing platform. In this work, using Mg-doped In2O3 nanowire E-mode FET sensor arrays decorated with various discrete metal nanoparticles (i.e., Au, Ag, and Pt) as illustrative prototypes here further confirms the feasibility of this design. Particularly, the Au decorated sensor arrays exhibit more than 3 orders of magnitude response to the exposure of 100 ppm CO among a mixture of gases at room temperature. The corresponding response time and detection limit are as low as ∼4 s and ∼500 ppb, respectively. All of these could have important implications for this "one key to one lock" hybrid sensor configuration which potentially open up a rational avenue to the design of advanced-generation chemical sensors with unprecedented selectivity and sensitivity.
Charge trapping layers are formed from different metallic nanocrystals in MoS2 -based nanocrystal floating gate memory cells in a process compatible with existing fabrication technologies. The memory cells with Au nanocrystals exhibit impressive performance with a large memory window of 10 V, a high program/erase ratio of approximately 10(5) and a long retention time of 10 years.
Cafestol and kahweol are natural diterpenes extracted from coffee beans. In addition to the effect of raising serum lipid, in vitro and in vivo experimental results have revealed that the two diterpenes demonstrate multiple potential pharmacological actions such as anti-inflammation, hepatoprotective, anti-cancer, anti-diabetic, and anti-osteoclastogenesis activities. The most relevant mechanisms involved are down-regulating inflammation mediators, increasing glutathione (GSH), inducing apoptosis of tumor cells and anti-angiogenesis. Cafestol and kahweol show similar biological activities but not exactly the same, which might due to the presence of one conjugated double bond on the furan ring of the latter. This review aims to summarize the pharmacological properties and the underlying mechanisms of cafestol-type diterpenoids, which show their potential as functional food and multi-target alternative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.