Van der Waals (vdW) heterodiodes based on two-dimensional (2D) materials have shown tremendous potential in photovoltaic detectors and solar cells. However, such 2D photovoltaic devices are limited by low quantum efficiencies due to the severe interface recombination and the inefficient contacts. Here, we report an efficient MoS2/AsP vdW hetero-photodiode utilizing a unilateral depletion region band design and a narrow bandgap AsP as an effective carrier selective contact. The unilateral depletion region is verified via both the Fermi level and the infrared response measurements. The device demonstrates a pronounced photovoltaic behavior with a short-circuit current of 1.3 μA and a large open-circuit voltage of 0.61 V under visible light illumination. Especially, a high external quantum efficiency of 71%, a record high power conversion efficiency of 9% and a fast response time of 9 μs are achieved. Our work suggests an effective scheme to design high-performance photovoltaic devices assembled by 2D materials.
Here we report InAs nanowire (NW) near-infrared photodetectors having a detection wavelength up to ∼1.5 μm. The single InAs NW photodetectors displayed minimum hysteresis with a high Ion/Ioff ratio of 10(5). At room temperature, the Schottky-Ohmic contacted photodetectors had an external photoresponsivity of ∼5.3 × 10(3) AW(-1), which is ∼300% larger than that of Ohmic-Ohmic contacted detectors (∼1.9 × 10(3) AW(-1)). A large enhancement in photoresponsivity (∼300%) had also been achieved in metal Au-cluster-decorated InAs NW photodetectors due to the formation of Schottky junctions at the InAs/Au cluster contacts. The photocurrent decreased when the photodetectors were exposed to ambient atmosphere because of the high surface electron concentration and rich surface defect states in InAs NWs. A theoretical model based on charge transfer and energy band change is proposed to explain this observed performance. To suppress the negative effects of surface defect states and atmospheric molecules, new InAs NW photodetectors with a half-wrapped top-gate had been fabricated by using 10 nm HfO2 as the top-gate dielectric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.