Inward rectifier K+ channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP2). Stimulation of the Ca2+-sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both Gq/11, which decreases PIP2, and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP2. How membrane PIP2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K+ are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K+ current (I K1) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP2 reporter tubby-R332H-cYFP to monitor PIP2 levels, we found that CaR activation in HEK293T cells increased membrane PIP2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K+ channels by accelerating PIP2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.
It has been reported that 80% of diabetic patients die due to cardiovascular diseases. We previously demonstrated that activated hypoxia-inducible factor-1α (HIF-1 α)/insulin-like growth factor binding protein-3 (IGFBP-3) signaling by reactive oxygen species (ROS)-regulated prolyl hydroxylase domain-containing protein (PHD) is involved in high-glucose (HG)-induced cardiac apoptosis. Diallyl trisulfide (DATS), a garlic component, shows the strongest inhibitory effect on diabetic cardiomyopathy. In this study, we investigated whether HIF-1α/IGFBP-3 signaling governs the antiapoptotic effect by DATS on HG-exposed cardiomyocytes. It was observed that significantly increased levels of cell apoptosis and decreased Akt phosphorylation were reversed by DATS in HG-exposed cardiac cells. H2O2 and PHD small interfering RNA treatments increased HIF-1α and IGFBP-3 protein levels, which were decreased by DATS treatment. Overexpression of HIF-1α and IGFBP-3 increased HG-induced cell apoptosis, which was suppressed by DATS. The coimmunoprecipitation assay results showed that DATS not only increased the IGF-1 level and reduced IGFBP-3 level but also suppressed their extracellular association for cardiac cells exposed to HG. Experiments using neonatal cardiomyocytes and hearts showed similar results. These findings indicate that the effect of ROS-regulated PHD on the activation of HIF-1α/IGFBP-3 signaling governs the antiapoptotic effect by DATS on HG-exposed cardiomyocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.