Location data are among the most widely used context data in context-aware and ubiquitous computing applications. Many systems with distinct deployment costs and positioning accuracies have been developed over the past decade for indoor positioning. The most useful method is focused on the received signal strength and provides a set of signal transmission access points. However, compiling a manual measuring Received Signal Strength (RSS) fingerprint database involves high costs and thus is impractical in an online prediction environment. The system used in this study relied on the Gaussian process method, which is a nonparametric model that can be characterized completely by using the mean function and the covariance matrix. In addition, the Naive Bayes method was used to verify and simplify the computation of precise predictions. The authors conducted several experiments on simulated and real environments at Tianjin University. The experiments examined distinct data size, different kernels, and accuracy. The results showed that the proposed method not only can retain positioning accuracy but also can save computation time in location predictions.
When dealing with vagueness, there are situations when there is insufficient information available, making it impossible to satisfactorily evaluate membership. The intuitionistic fuzzy set theory is more suitable than fuzzy sets to deal with such problem. In 1996, Atanassov proposed the mapping from intuitionistic fuzzy sets to fuzzy sets. Furthermore, intuitionistic fuzzy sets are isomorphic to interval valued fuzzy sets, and interval valued fuzzy sets are regarded as the special cases of type-2 fuzzy sets in recently studies. However, their discussions are not only hardly comprehending but also lacking the reliable applications. In this study, the advantage of type-2 fuzzy sets is employed, and the switching relation between type-2 fuzzy sets and intuitionistic fuzzy sets is defined axiomatically. The switching results are applied to show the usefulness of the proposed method in pattern recognition and medical diagnosis reasoning.
Chen first proposed the high-order fuzzy-time series model to overcome the drawback of existing fuzzy first-order forecasting models. His model involved easy calculations and forecasted more accurately than the other models. This study proposes an enhanced fuzzy-time series model, called heuristic high-order fuzzy time series model, to deal with forecasting problems. The proposed model aims to overcome the deficiency of Chen's model, which depends strongly on the highest-order fuzzy-time series to eliminate ambiguities at forecasting and requires a vast memory for data storage. The empirical analysis reveals that the proposed model yields more accurate forecasts.
Location data is one of the most widely used context data types in context-aware and ubiquitous computing applications. To support locating applications in indoor environments, numerous systems with different deployment costs and positioning accuracies have been developed over the past decade. One useful method, based on received signal strength (RSS), provides a set of signal transmission access points. However, compiling a remeasurement RSS database involves a high cost, which is impractical in dynamically changing environments, particularly in highly crowded areas. In this study, we propose a dynamic estimation resampling method for certain locations chosen from a set of remeasurement fingerprinting databases. Our proposed method adaptively applies different, newly updated and offline fingerprinting points according to the temporal and spatial strength of the location. To achieve accuracy within a simulated area, the proposed method requires approximately 3% of the feedback to attain a double correctness probability comparable to similar methods; in a real environment, our proposed method can obtain excellent 1 m accuracy errors in the positioning system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.