A global numerical model for shallow water flows on the cubed-sphere grid is proposed in this paper. The model is constructed by using the constrained interpolation profile/multi-moment finite volume method (CIP/MM FVM). Two kinds of moments, i.e. the point value (PV) and the volume-integrated average (VIA) are defined and independently updated in the present model by different numerical formulations. The Lax-Friedrichs upwind splitting is used to update the PV moment in terms of a derivative Riemann problem, and a finite volume formulation derived by integrating the governing equations over each mesh element is used to predict the VIA moment. The cubed-sphere grid is applied to get around the polar singularity and to obtain uniform grid spacing for a spherical geometry. Highly localized reconstruction in CIP/MM FVM is well suited for the cubed-sphere grid, especially in dealing with the discontinuity in the coordinates between different patches. The mass conservation is completely achieved over the whole globe. The numerical model has been verified by Williamson's standard test set for shallow water equation model on sphere. The results reveal that the present model is competitive to most existing ones.
The two-dimensional nonhydrostatic compressible dynamical core for the atmosphere has been developed by using a new nodal-type high-order conservative method, the so-called multimoment constrained finitevolume (MCV) method. Different from the conventional finite-volume method, the predicted variables (unknowns) in an MCV scheme are the values at the solution points distributed within each mesh cell. The time evolution equations to update the unknown point values are derived from a set of constraint conditions based on the multimoment concept, where the constraint on the volume-integrated average (VIA) for each mesh cell is cast into a flux form and thus guarantees rigorously the numerical conservation. Two important features make the MCV method particularly attractive as an accurate and practical numerical framework for atmospheric and oceanic modeling. 1) The predicted variables are the nodal values at the solution points that can be flexibly located within a mesh cell (equidistant solution points are used in the present model). It is computationally efficient and provides great convenience in dealing with complex geometry and source terms. 2) High-order and physically consistent formulations can be built by choosing proper constraints in view of not only numerical accuracy and efficiency but also underlying physics. In this paper the authors present a dynamical core that uses the third-and the fourth-order MCV schemes. They have verified the numerical outputs of both schemes by widely used standard benchmark tests and obtained competitive results. The present numerical core provides a promising and practical framework for further development of nonhydrostatic compressible atmospheric models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.