Background COVID-19 has spread globally. Epidemiological susceptibility to COVID-19 has been reported in patients with cancer. We aimed to systematically characterise clinical features and determine risk factors of COVID-19 disease severity for patients with cancer and COVID-19. MethodsIn this multicentre, retrospective, cohort study, we included all adult patients (aged ≥18 years) with any type of malignant solid tumours and haematological malignancy who were admitted to nine hospitals in Wuhan, China, with laboratory-confirmed COVID-19 between Jan 13 and March 18, 2020. Enrolled patients were statistically matched (2:1) with patients admitted with COVID-19 who did not have cancer with propensity score on the basis of age, sex, and comorbidities. Demographic characteristics, laboratory examinations, illness severity, and clinical interventions were compared between patients with COVID-19 with or without cancer as well as between patients with cancer with non-severe or severe COVID-19. COVID-19 disease severity was defined on admission on the basis of the WHO guidelines. Univariable and multivariable logistic regression, adjusted for age, sex, comorbidities, cancer type, tumour stage, and antitumour treatments, were used to explore risk factors associated with COVID-19 disease severity. This study was registered in the Chinese Clinical Trial Register, ChiCTR2000030807. Findings Between Jan 13 and March 18, 2020, 13 077 patients with COVID-19 were admitted to the nine hospitals in Wuhan and 232 patients with cancer and 519 statistically matched patients without cancer were enrolled. Median follow-up was 29 days (IQR 22-38) in patients with cancer and 27 days (20-35) in patients without cancer. Patients with cancer were more likely to have severe COVID-19 than patients without cancer (148 [64%] of 232 vs 166 [32%] of 519; odds ratio [OR] 3•61 [95% CI 2•59-5•04]; p<0•0001). Risk factors previously reported in patients without cancer, such as older age; elevated interleukin 6, procalcitonin, and D-dimer; and reduced lymphocytes were validated in patients with cancer. We also identified advanced tumour stage (OR 2•60, 95% CI 1•05-6•43; p=0•039), elevated tumour necrosis factor α (1•22, 1•01-1•47; p=0•037), elevated N-terminal pro-B-type natriuretic peptide (1•65, 1•03-2•78; p=0•032), reduced CD4+ T cells (0•84, 0•71-0•98; p=0•031), and reduced albumin-globulin ratio (0•12, 0•02-0•77; p=0•024) as risk factors of COVID-19 severity in patients with cancer. Interpretation Patients with cancer and COVID-19 were more likely to deteriorate into severe illness than those without cancer. The risk factors identified here could be helpful for early clinical surveillance of disease progression in patients with cancer who present with COVID-19.
Context In 2020, the terminology of metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace non-alcoholic fatty liver disease (NAFLD). Objectives: To investigate the prevalence and incidence of MAFLD and evaluate its impacts on incident extrahepatic diseases. Methods A total of 6,873 subjects, with a 4.6-year follow-up, were included into this study. Associations of MAFLD and NAFLD with diabetes, chronic kidney disease (CKD), and cardiovascular disease (CVD) were examined using logistic regression and Cox proportional hazards models. Results The prevalence of NAFLD and MAFLD was 40.3% (95% confidence interval [CI] 39.2-41.5) and 46.7% (95% CI 45.6-47.9), respectively. Additionally, 321 (4.7%) and 156 (2.3%) subjects had MAFLD with excessive alcohol consumption and hepatitis B virus (HBV) infection. During the follow-up period, the incidence of NAFLD and MAFLD was 22.7% (95% CI 21.3-24.0) and 27.0% (95% CI 25.5-28.4). MAFLD was associated with higher risks of incident diabetes (risk ratio [RR] 2.08, 95% CI 1.72-2.52), CKD (RR 1.64, 95% CI 1.39-1.94), and CVD (hazard ratio 1.44, 95% CI 1.15-1.81). Similar associations for NAFLD were observed. Furthermore, the MAFLD subgroups with excessive alcohol consumption (RR 2.49, 95% CI 1.64-3.78) and HBV infection (RR 1.98, 95% CI 1.11-3.52) were associated with higher risks of incident diabetes. Conclusions The change from NAFLD to MAFLD did not affect the associations with diabetes, CKD, and CVD much. MAFLD further identified those patients of metabolically fatty liver combined with excessive alcohol consumption and HBV infection, who had increased risks of incident diabetes compared with those of non-fatty liver.
BackgroundCurcumin induces apoptosis and autophagy in different cancer cells. Moreover, chemical and biological experiments have evidenced that curcumin is a biologically active iron chelator and induces cytotoxicity through iron chelation. We thus hypothesized that curcumin may induce apoptosis and autophagy in castration-resistant prostate cancer (CRPC) cells through its iron-chelating properties.Materials and methodsCRPC cells were loaded with curcumin alone or in combination with ferric ammonium citrate (FAC). Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was assessed by flow cytometry, terminal deoxynucleotidyl transferase nick end labeling (TUNEL) assay and caspase activity. Autophagy status was analyzed by the detection of autophagosomes and light chain 3-II (LC3-II) using transmission electron microscopy and Western blot. Iron-binding activity of curcumin was assessed by spectrophotometry and MTT assay. The expression levels of transferrin receptor 1 (TfR1) and iron regulatory protein 1 (IRP1) were examined by Western blot.ResultsCurcumin induced apoptosis and autophagy in CRPC cells. Combining curcumin with autophagy inhibitors (3-methyladenine [3-MA]) synergized the apoptotic effect of curcumin. Moreover, curcumin bound to FAC at a ratio of ~1:1, as assessed by spectrophotometry and MTT assay. Apoptosis and autophagy induced by curcumin were counteracted by equal amounts of FAC. At apoptosis- and autophagy-inducing concentrations, curcumin enhanced the expression levels of TfR1 and IRP1, indicative of iron deprivation induced by curcumin.ConclusionTogether, our results indicate that curcumin induces apoptosis and protective autophagy in CRPC cells, which are at least partially dependent on its iron-chelating properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.