Background COVID-19 has spread globally. Epidemiological susceptibility to COVID-19 has been reported in patients with cancer. We aimed to systematically characterise clinical features and determine risk factors of COVID-19 disease severity for patients with cancer and COVID-19. MethodsIn this multicentre, retrospective, cohort study, we included all adult patients (aged ≥18 years) with any type of malignant solid tumours and haematological malignancy who were admitted to nine hospitals in Wuhan, China, with laboratory-confirmed COVID-19 between Jan 13 and March 18, 2020. Enrolled patients were statistically matched (2:1) with patients admitted with COVID-19 who did not have cancer with propensity score on the basis of age, sex, and comorbidities. Demographic characteristics, laboratory examinations, illness severity, and clinical interventions were compared between patients with COVID-19 with or without cancer as well as between patients with cancer with non-severe or severe COVID-19. COVID-19 disease severity was defined on admission on the basis of the WHO guidelines. Univariable and multivariable logistic regression, adjusted for age, sex, comorbidities, cancer type, tumour stage, and antitumour treatments, were used to explore risk factors associated with COVID-19 disease severity. This study was registered in the Chinese Clinical Trial Register, ChiCTR2000030807. Findings Between Jan 13 and March 18, 2020, 13 077 patients with COVID-19 were admitted to the nine hospitals in Wuhan and 232 patients with cancer and 519 statistically matched patients without cancer were enrolled. Median follow-up was 29 days (IQR 22-38) in patients with cancer and 27 days (20-35) in patients without cancer. Patients with cancer were more likely to have severe COVID-19 than patients without cancer (148 [64%] of 232 vs 166 [32%] of 519; odds ratio [OR] 3•61 [95% CI 2•59-5•04]; p<0•0001). Risk factors previously reported in patients without cancer, such as older age; elevated interleukin 6, procalcitonin, and D-dimer; and reduced lymphocytes were validated in patients with cancer. We also identified advanced tumour stage (OR 2•60, 95% CI 1•05-6•43; p=0•039), elevated tumour necrosis factor α (1•22, 1•01-1•47; p=0•037), elevated N-terminal pro-B-type natriuretic peptide (1•65, 1•03-2•78; p=0•032), reduced CD4+ T cells (0•84, 0•71-0•98; p=0•031), and reduced albumin-globulin ratio (0•12, 0•02-0•77; p=0•024) as risk factors of COVID-19 severity in patients with cancer. Interpretation Patients with cancer and COVID-19 were more likely to deteriorate into severe illness than those without cancer. The risk factors identified here could be helpful for early clinical surveillance of disease progression in patients with cancer who present with COVID-19.
Intercellular transfer of organelles via tunneling nanotubes (TNTs) is a novel means of cell-to-cell communication. Here we demonstrate the existence of TNTs between co-cultured RT4 and T24 bladder cancer cells using light microscopy, fluorescence imaging, and scanning electron microscopy (SEM). Spontaneous unidirectional transfer of mitochondria from T24 to RT4 cells was detected using fluorescence imaging and flow cytometry. The distribution of mitochondria migrated from T24 cells was in good agreement with the original mitochondria in RT4 cells, which may imply mitochondrial fusion. We detected cytoskeleton reconstruction in RT4-Mito-T24 cells by observing F-actin redistribution. Akt, mTOR, and their downstream mediators were activated and increased. The resultant increase in the invasiveness of bladder cancer cells was detected in vitro and in vivo. These data indicate that TNTs promote intercellular mitochondrial transfer between heterogeneous cells, followed by an increase in the invasiveness of bladder cancer cells.
BackgroundCurcumin induces apoptosis and autophagy in different cancer cells. Moreover, chemical and biological experiments have evidenced that curcumin is a biologically active iron chelator and induces cytotoxicity through iron chelation. We thus hypothesized that curcumin may induce apoptosis and autophagy in castration-resistant prostate cancer (CRPC) cells through its iron-chelating properties.Materials and methodsCRPC cells were loaded with curcumin alone or in combination with ferric ammonium citrate (FAC). Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was assessed by flow cytometry, terminal deoxynucleotidyl transferase nick end labeling (TUNEL) assay and caspase activity. Autophagy status was analyzed by the detection of autophagosomes and light chain 3-II (LC3-II) using transmission electron microscopy and Western blot. Iron-binding activity of curcumin was assessed by spectrophotometry and MTT assay. The expression levels of transferrin receptor 1 (TfR1) and iron regulatory protein 1 (IRP1) were examined by Western blot.ResultsCurcumin induced apoptosis and autophagy in CRPC cells. Combining curcumin with autophagy inhibitors (3-methyladenine [3-MA]) synergized the apoptotic effect of curcumin. Moreover, curcumin bound to FAC at a ratio of ~1:1, as assessed by spectrophotometry and MTT assay. Apoptosis and autophagy induced by curcumin were counteracted by equal amounts of FAC. At apoptosis- and autophagy-inducing concentrations, curcumin enhanced the expression levels of TfR1 and IRP1, indicative of iron deprivation induced by curcumin.ConclusionTogether, our results indicate that curcumin induces apoptosis and protective autophagy in CRPC cells, which are at least partially dependent on its iron-chelating properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.