In this paper, the corrosion mechanism and tensile properties of basalt fibers in sodium hydroxide (NaOH) solution with various concentrations and temperatures were studied. The hydroxyl ions disrupt the –Si–O–Si– and –Si–O–Al– bonds leading to the formation of insoluble hydroxides. With the continuation of the hydration reaction, a hydration layer (corrosion shell) with high content of calcium, iron, manganese and titanium ions was formed on the fiber surface. The corrosion shell enabled an increase in the strength and elongation at break of basalt fibers, significantly. Results showed that the tensile strength of fibers was strongly dependent on temperature and concentration. After the basalt fibers were immersed in 1 mol/L NaOH solution at 50 °C for 1 h, 3 h, 6 h, 1 day and 3 days, their retention ratios of strength were 67.6%, 57.8%, 52.5%, 49.0%, 58.2%, respectively. Higher temperature accelerated the corrosion rate of basalt fibers, shortened the formation time of the corrosion shell and increased mass loss. From 25 to 70 °C, the mass loss of fibers increased from 2.4% to 33.8% for fibers immersed in 1 mol/L NaOH for 3 days. The experimental results from quantitative x-ray fluorescence (XRF) showed that the mass loss of basalt fibers was mainly due to the leaching of silicon, aluminum and potassium ions.
In this study, the thermal stability and combustion performance of basalt fiber reinforced polypropylene (BFRPP) composite and pure polypropylene (PP) were compared. The results show that the basalt fiber has no positive effect on increasing the initial decomposition temperature of PP, but it could reduce the maximum thermal decomposition rate and increase the temperature of the maximum thermal decomposition rate. Adding basalt fiber to PP could slightly reduce the limiting oxygen index. At the same oxygen concentration, the BFRPP burned significantly more slowly than the PP. In addition, during the combustion, it was observed that the BFRPP showed a better anti-melt dripping effect than the PP. The results from the cone calorimeter test show that, under the same external heat flux, the time-to-ignition (TTI) of BFRPP was less than that of PP. This indicated that BFRPP was easier to ignite than PP. It was also found that the reciprocal of the square root of the TTI of both has a linear relationship with external heat flux. BFRPP has a lower peak heat release rate and total heat release than PP. Moreover, BFRPP produced less smoke than PP when burned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.