Leymus mollis (2n = 4x = 28, NsNsXmXm) is an important tetraploid species in Leymus (Poaceae: Triticeae) and a useful genetic resource for wheat breeding because of the stress tolerance and disease resistance of this species. The development of Triticum aestivum (common wheat) - L. mollis derivatives with desirable genes will provide valuable bridge materials for wheat improvement, especially regarding powdery mildew resistance genes, which are rarely documented in L. mollis. In the present study, three derivatives of common wheat cultivar 7182 and L. mollis, namely M47, M51, and M42, were subjected to chromosomal characterization via cytogenetic identification, the analysis of molecular markers, and genomic in situ hybridization. These derivatives were all morphologically and cytogenetically stable. M47 was highly resistant to powdery mildew and nearly immune to stripe rust at the adult stage, and the chromosome constitution of this derivative can be expressed as 2n = 56 = 42T.a + 14L.m (where T.a = T. aestivum chromosomes; L.m = L. mollis chromosomes). Compared to M47, M42 was also resistant to stripe rust but was susceptible to powdery mildew; the chromosome constitution of M42 was 2n = 54 = 42T.a + 12L.m, in which a pair of homoeologous group 7 L.m chromosomes was eliminated. Finally, M51 was susceptible to powdery mildew and stripe rust and had a chromosome constitution of 2n = 48 = 42T.a + 6L.m, in which four pairs of L.m chromosomes from homoeologous groups 2, 4, 5, and 7 were eliminated. The differing disease resistances of the three derivatives are discussed in this report in the context of their chromosomal variations; this information can thus contribute to breeding disease resistant wheat with the potential for applying these derivatives as useful bridge materials.
Thinopyrum ponticum (2n = 10x = 70), a member of the tertiary gene pool of wheat (Triticum aestivum L.), harbors many biotic and abiotic stress resistance genes. CH10A5, a novel disomic substitution line from a cross of T. aestivum cv. 7182 and Th. ponticum, was characterized by cytogenetic identification, in situ hybridization, molecular marker analysis, and morphological investigation of agronomic traits and disease resistance. Cytological observations showed that CH10A5 contained 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genome in situ hybridization (GISH) analysis indicated that two of its chromosomes came from the J s genome of Th. ponticum, and wheat 15K array mapping and fluorescence in situ hybridization (FISH) revealed that chromosome 1D was absent from CH10A5. Polymorphic analysis of molecular markers indicated that the pair of alien chromosomes belonged to homoeologous group one, designated as 1J s. Thus, CH10A5 was a wheat-Th. ponticum 1J s (1D) disomic substitution line. Field disease resistance trials demonstrated that the introduced Th. ponticum chromosome 1J s was probably responsible for resistance to both stripe rust and powdery mildew at the adult stage. Based on specific-locus amplified fragment sequencing (SLAF-seq), 507 STS molecular markers were developed to distinguish chromosome 1J s genetic material from that of wheat. Of these, 49 STS markers could be used to specifically identify the genetic material of Th. ponticum. CH10A5 will increase the resistance gene diversity of wheat breeding materials, and the markers developed here will permit further tracing of heterosomal chromosome fragments in the future.
Leymus mollis (2n = 4x = 28, NsNsXmXm) possesses novel and important genes for resistance against multi-fungal diseases. The development of new wheat—L. mollis introgression lines is of great significance for wheat disease resistance breeding. M11003-3-1-15-8, a novel disomic substitution line of common wheat cv. 7182 –L. mollis, developed and selected from the BC1F5 progeny between wheat cv. 7182 and octoploid Tritileymus M47 (2n = 8x = 56, AABBDDNsNs), was characterized by morphological and cytogenetic identification, analysis of functional molecular markers, genomic in situ hybridization (GISH), sequential fluorescence in situ hybridization (FISH)—genomic in situ hybridization (GISH) and disease resistance evaluation. Cytological observations suggested that M11003-3-1-15-8 contained 42 chromosomes and formed 21 bivalents at meiotic metaphase I. The GISH investigations showed that line contained 40 wheat chromosomes and a pair of L. mollis chromosomes. EST-STS multiple loci markers and PLUG (PCR-based Landmark Unique Gene) markers confirmed that the introduced L. mollis chromosomes belonged to homoeologous group 7, it was designated as Lm#7Ns. While nulli-tetrasomic and sequential FISH-GISH analysis using the oligonucleotide Oligo-pSc119.2 and Oligo-pTa535 as probes revealed that the wheat 7D chromosomes were absent in M11003-3-1-15-8. Therefore, it was deduced that M11003-3-1-15-8 was a wheat–L. mollis Lm#7Ns (7D) disomic substitution line. Field disease resistance demonstrated that the introduced L. mollis chromosomes Lm#7Ns were responsible for the stripe rust resistance at the adult stage. Moreover, M11003-3-1-15-8 had a superior numbers of florets. The novel disomic substitution line M11003-3-1-15-8, could be exploited as an important genetic material in wheat resistance breeding programs and genetic resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.