Intelligent manufacturing is developing rapidly nowadays, promoting the efficiency of manufacturing. In comparison, the design process has become a bottleneck in the product life cycle. In order to address this problem, this research develops an intelligent design method based on the automobile transmission system. Firstly, a mathematical model of the coupled vibration between the drive shaft and the main reducer was developed, and the vibration responses of the transmission system were simulated based on this mathematical model. Then, a test rig was developed to measure the vibration responses of the system; the measured results correlated well with the simulation results, indicating that the mathematical model can be used to investigate the coupled vibration between the drive shaft and the main reducer. Furthermore, the multiple parameters of the transmission system were optimized based on the mathematical model using the intelligent optimization algorithm. In particular, software was developed based on the intelligent optimization algorithm for the convenience of analysis, and the optimized results were acquired. The analysis results show that the vibration responses can be reduced when the optimized parameters are applied, indicating that the intelligent design method developed in this research is effective for the intelligent design of transmission system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.