Gemfibrozil (GEM), a lipid regulator, is a fibric acid derivative widely used in the treatment of hyperlipidemia. It has been reported that GEM can induce acute liver injury in the course of therapy in clinical practice, so it is necessary to elucidate the mechanisms of toxic action. The present study focused on metabolic activation of GEM, possibly participating in GEM-mediated liver injury. A benzylic alcohol metabolite (M1), along with a phenol metabolite (M2), was detected in microsomal incubations, rat primary hepatocyte culturing, and rats given GEM. A GSH conjugate (M3) was detected in cultured rat hepatocytes after exposure to GEM. Formation of M1 was found to be NADPH dependent, and generation of M3 required M1 and 3′-phosphoadenosine-5′phosphosulfate. It is most likely that GEM was biotransformed to M1, which was further metabolized to a sulfate. The resulting sulfate was reactive to bio-thiols. Cytochrome P450 and sulfotransferases participated in the phase I and phase II reactions, respectively. M1 and M3 were chemically synthesized, and their structures were characterized by mass spectrometry and NMR. The present study has particular value for elucidating the mechanism of liver injury caused by GEM.
Isoprocarb (IPC), one of the most important carbamate pesticides, is used to control pests, such as rice planthoppers in crops. Studies have found that IPC induced hepatotoxicity in poultry chicken. However, the mechanisms of IPC-induced hepatotoxicity are unclear. The objectives of this study were to characterize reactive metabolites of IPC in vitro and in vivo, to identify cytochrome P450 enzymes for metabolic activation, and to define a possible correlation between the metabolic activation and cytotoxicity of IPC. In GSH- or NAC-supplemented microsomal incubations, one GSH conjugate (M6) and two NAC conjugates (M7 and M8) were detected after exposure to IPC. The corresponding GSH conjugate and NAC conjugates were found in the liver homogenates and urine of mice after IPC administration. IPC was found to be metabolized to a quinone intermediate reactive to GSH in vitro and in vivo. IPC was found to induce marked cytotoxicity in cultured mouse primary hepatocytes. Ketoconazole, a selective CYP3A4/5 enzyme inhibitor, attenuated the susceptibility of hepatocytes to IPC cytotoxicity.
2,6-Dimethylphenol (2,6-DMP) is an environmental pollutant found in industrial wastewater. Exposure to 2,6-DMP is of increasing concern as it endangered reportedly some aquatic animals. In this study, we investigated the metabolic activation and hepatotoxicity of 2,6-DMP. 2,6-DMP was metabolized to an o-quinone methide intermediate in vitro and in vivo. The electrophilic metabolite was reactive to the sulfhydryl groups of glutathione, N-acetyl cysteine, and cysteine. NADPH was required for the formation of the reactive metabolite. The quinone methide intermediate reacted with cysteine residues to form hepatic protein adduction. A single dose of 2,6-DMP induced marked elevation of serum ALT and AST in mice. Both the protein adduction and hepatotoxicity of 2,6-DMP showed dose dependency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.