Inside Front Cover: In article number 1900316, Jichun You and co‐workers provide an efficient strategy to prepare poly(L‐lactic acid) (PLLA) with high ductility and transparency, in which tiny amount of polyvinylidene fluoride (PVDF) and compatibilizers are added to the PLLA matrix. The left part is the PVDF/PLLA blend without compatibilizers while the right part is the PVDF/PLLA blend with compatibilizers. The PVDF/PLLA blends containing compatibilizers exhibit better mechanical and optical properties.
In this work, the localization of reactive compatibilizer (RC, containing poly(methyl methacrylate) (PMMA) backbone with randomly distributed glycidyl methacrylate (GMA) on it) at the polyvinylidene fluoride/poly(l-lactic acid) (PVDF/PLLA) interface has been manipulated by means of GMA contents. At the very beginning of mixing, RC tends to stay in the PVDF phase due to the miscibility between PVDF and PMMA. Upon further shearing, more and more PLLA chains have been grafted on PMMA backbone, producing PLLA–g–PMMA copolymer. The balanced stress on two sides accounts for the localization of compatibilizers at the PVDF/PLLA interface. Finally, the stress of the PLLA side has been enhanced remarkably due to the higher graft density of PLLA, resulting in the enrichment of the copolymer in the PLLA matrix. The migration of RC from the PVDF phase to the immiscible interface and PLLA matrix can be accelerated by employing RC with higher GMA content. Furthermore, the compatibilizer localization produces a significant influence on the morphology and ductility of the PVDF/PLLA blend. Only when the compatibilizers precisely localize at the interface, the blend exhibits the smallest domain and highest elongation at break. Our results are of great significance for not only the fabrication of PLLA with high ductility, but also the precise localization of compatibilizers at the interface of the immiscible blend.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.