Summary• AtDjB1 belongs to the J-protein family in Arabidopsis thaliana. Its biological functions in plants are largely unknown.• In this study, we examined the roles of AtDjB1 in resisting heat and oxidative stresses in A. thaliana using reverse genetic analysis.• AtDjB1 knockout plants (atj1-1) were more sensitive to heat stress than wildtype plants, and displayed decreased concentrations of ascorbate (ASC), and increased concentrations of hydrogen peroxide (H 2 O 2 ) and oxidative products after heat shock. Application of H 2 O 2 accelerated cell death and decreased seedling viability in atj1-1. Exogenous ASC conferred much greater thermotolerance in atj1-1 than in wildtype plants, suggesting that a lower concentration of ASC in atj1-1 could be responsible for the increased concentration of H 2 O 2 and decreased thermotolerance. Furthermore, AtDjB1 was found to localize to mitochondria, directly interact with a mitochondrial heat-shock protein 70 (mtHSC70-1), and stimulate ATPase activity of mtHSC70-1. AtDjB1 knockout led to the accumulation of cellular ATP and decreased seedling respiration, indicating that AtDjB1 modulated the ASC concentration probably through affecting the function of mitochondria.• Taken together, these results suggest that AtDjB1 plays a crucial role in maintaining redox homeostasis, and facilitates thermotolerance by protecting cells against heat-induced oxidative damage.
Obesity is the result of abnormal adipose development and energy metabolism. Using vascular endothelial growth factor (VEGF) B-knockout and inducible VEGF downregulation mouse models, we have shown that VEGFB inactivation caused expansion of white adipose, whitening of brown adipose, an increase in fat accumulation, and a reduction in energy consumption. At the same time, expression of the white adipose-associated genes was increased and brown adipose-associated genes decreased. VEGF repression, in contrast, induced brown adipose expansion and brown adipocyte development in white adipose, increased energy expenditure, upregulated brown adipose-associated genes, and downregulated white adipose-associated genes. When VEGFB-knockout and VEGF-repressed mice are crossed together, VEGF and VEGFB can counteractively regulate large numbers of genes and efficiently reverse each other's roles. These genes, under counteractive VEGF and VEGFB regulations, include transcription factors, adhesion molecules, and metabolic enzymes. This balancing role is confirmed by morphologic and functional changes. This study reports that VEGF and VEGFB counteractively regulate adipose development and function in energy metabolism.
AtDjB1 is a mitochondria-located J-protein in Arabidopsis thaliana It is involved in the regulation of plant growth and development; however, the exact mechanisms remain to be determined. We performed comparison analyses of phenotypes, auxin signalling, redox status, mitochondrial structure and function using wild-type plants, AtDjB1 mutants, rescued AtDjB1 mutants by AtDjB1 or YUCCA2 (an auxin synthesis gene), and AtDjB1 overexpression plants. AtDjB1 mutants (atj1-1 or atj1-4) exhibited inhibition of growth and development and reductions in the level of IAA and the expression of YUCCA genes compared to wild-type plants. The introduction of AtDjB1 or YUCCA2 into atj1-1 largely rescued phenotypic defects and the IAA level, indicating that AtDjB1 probably regulates growth and development via auxin. Furthermore, atj1-1 plants displayed a significant reduction in amount/activity of mitochondrial complex I compared to wild-type plants; this resulted in the accumulation of reactive oxygen species (ROS). Moreover, exogenous H2O2 markedly inhibited the expression of YUCCA genes in wild-type plants. In contrast, the reducing agent ascorbate increased the expression of YUCCA genes and IAA level in atj1-1 plants, indicating that the low auxin level observed in atj1-1 was probably due to the high oxidation status. Overall, the data presented here suggest that AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling in Arabidopsis.
Oxytocin receptor (OXTR) is a G-protein coupled receptor and known for regulation of maternal and social behaviors. Null mutation (Oxtr-/-) leads to defects in lactation due to impaired milk ejection and maternal nurturing. Overexpression of OXTR has never been studied. To define the functions of OXTR overexpression, a transgenic mouse model that overexpresses mouse Oxtr under β-actin promoter was developed (++Oxtr). ++Oxtr mice displayed advanced development and maturation of mammary gland, including ductal distention, enhanced secretory differentiation and early milk production at non-pregnancy and early pregnancy. However, ++Oxtr dams failed to produce adequate amount of milk and led to lethality of newborns due to early involution of mammary gland in lactation. Mammary gland transplantation results indicated the abnormal mammary gland development was mainly from hormonal changes in ++Oxtr mice but not from OXTR overexpression in mammary gland. Elevated OXTR expression increased prolactin-induced phosphorylation and nuclear localization of STAT5 (p-STAT5), decreased progesterone level, leading to early milk production in non-pregnant and early pregnant females, whereas low prolactin and STAT5 activation in lactation led to insufficient milk production. Progesterone treatment reversed the OXTR-induced accelerated mammary gland development by inhibition of prolactin/p-STAT5 pathway. Prolactin administration rescued lactation deficiency through STAT5 activation. Progesterone plays a negative role in OXTR regulated prolactin/p-STAT5 pathways. The study provides evidence that OXTR overexpression induces abnormal mammary gland development through progesterone and prolactin-regulated p-STAT5 pathway.
AtDjB1 is a member of the Arabidopsis thaliana J-protein family. AtDjB1 is targeted to the mitochondria and plays a crucial role in A. thaliana heat and oxidative stress resistance. Herein, the role of AtDjB1 in adapting to saline and drought stress was studied in A. thaliana. AtDjB1 expression was induced through salinity, dehydration and abscisic acid (ABA) in young seedlings. Reverse genetic analyses indicate that AtDjB1 is a negative regulator in plant osmotic stress tolerance. Further, AtDjB1 knockout mutant plants (atj1-1) exhibited greater ABA sensitivity compared with the wild-type (WT) plants and the mutant lines with a rescued AtDjB1 gene. AtDjB1 gene knockout also altered the expression of several ABA-responsive genes, which suggests that AtDjB1 is involved in osmotic stress tolerance through its effects on ABA signaling pathways. Moreover, atj1-1 plants exhibited higher glucose levels and greater glucose sensitivity in the post-germination development stage. Applying glucose promoted an ABA response in seedlings, and the promotion was more evident in atj1-1 than WT seedlings. Taken together, higher glucose levels in atj1-1 plants are likely responsible for the greater ABA sensitivity and increased osmotic stress tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.