We reported that atomically dispersed Pd on graphene can be fabricated using the atomic layer deposition technique. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure spectroscopy both confirmed that isolated Pd single atoms dominantly existed on the graphene support. In selective hydrogenation of 1,3-butadiene, the single-atom Pd1/graphene catalyst showed about 100% butenes selectivity at 95% conversion at a mild reaction condition of about 50 °C, which is likely due to the changes of 1,3-butadiene adsorption mode and enhanced steric effect on the isolated Pd atoms. More importantly, excellent durability against deactivation via either aggregation of metal atoms or carbonaceous deposits during a total 100 h of reaction time on stream was achieved. Therefore, the single-atom catalysts may open up more opportunities to optimize the activity, selectivity, and durability in selective hydrogenation reactions.
Supported metal clusters containing only a few atoms are of great interest. Progress has been made in synthesis of metal single-atom catalysts. However, precise synthesis of metal dimers on high-surface area support remains a grand challenge. Here, we show that Pt2 dimers can be fabricated with a bottom–up approach on graphene using atomic layer deposition, through proper nucleation sites creation, Pt1 single-atom deposition and attaching a secondary Pt atom selectively on the preliminary one. Scanning transmission electron microscopy, x-ray absorption spectroscopy, and theoretical calculations suggest that the Pt2 dimers are likely in the oxidized form of Pt2Ox. In hydrolytic dehydrogenation of ammonia borane, Pt2 dimers exhibit a high specific rate of 2800 molH2 molPt
−1 min−1 at room temperature, ~17- and 45-fold higher than graphene supported Pt single atoms and nanoparticles, respectively. These findings open an avenue to bottom–up fabrication of supported atomically precise ultrafine metal clusters for practical applications.
In water-promoted CO oxidation, water was thought not to directly participate in CO 2 production. Here we report that via a water-mediated Mars−van Krevelen (MvK) mechanism, water can directly contribute to about 50% of CO 2 production on a single-atom Pt 1 /CeO 2 catalyst. The origin is the facile reaction of CO with the hydroxyl from dissociated water to yield the carboxyl intermediate, which dehydrogenates subsequently with the help of a lattice hydroxyl to generate CO 2 and water. The water-mediated MvK type reaction found here provides new insights in the promotion role of water in heterogeneous catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.