Mulberry leaf is a common vegetable with a variety of beneficial effects, such as hypoglycemic activity. However, the underlying mechanism of its hypoglycemic effect have not been fully revealed. In this study, two flavonoid derivatives were isolated from mulberry leaves, a new geranylated flavonoid compound (1) and its structural analogue (2). The structures of compounds 1 and 2 were elucidated using spectroscopic analysis. To study the potential hypoglycemic properties of these compounds, their regulatory effects on protein tyrosine phosphatase 1B (PTP1B) were investigated. In comparison to oleanolic acid, compounds 1 and 2 showed significant inhibitory activities (IC 50 = 4.53 ± 0.31 and 10.53 ± 1.76 μM) against PTP1B, the positive control (IC 50 = 7.94 ± 0.76 μM). Molecular docking predicted the binding sites of compound 1 to PTP1B. In insulin-resistance HepG2 cell, compound 1 promoted glucose consumption in a dose-dependent manner. Furthermore, western blot and polymerase chain reaction analyses indicated that compound 1 might regulate glucose consumption through the PTP1B/IRS/PI3K/AKT pathway. In conclusion, geranylated flavonoids in mulberry leaves inhibite PTP1B and increase the glucose consumption in insulin-resistant cells. These findings provide an important basis for the use of mulberry leaf flavonoids as a dietary supplement to regulate glucose metabolism.
Context:
ALI is a common disease characterized by acute pulmonary inflammatory disorder.
Abutilon theophrasti
Medik. (Malvaceae), as a Chinese traditional medicine, is used for the treatment of inflammation. Its main constituents are flavonoid compounds.
Objective:
This study investigates the regulatory effect of a TFE from
Abutilon theophrasti
leaves on gene expression in LPS-induced ALI mice via the NF-κB and MAPK signaling pathways.
Materials and methods:
Kunming mice were intragastrically administered TFE (0.25, 0.5, 1.0 g/kg) for 5 days, and then ALI was induced via intranasal administration 40 μg of LPS in 10 μL PBS after intragastric administration on the 5th day, and PBS and DEX (2 mg/kg) were negative and positive control groups, respectively.
Results:
The relative expression of iNOS gene was 0.707, 0.507 and 0.483 for 0.25, 0.5 and 1.0 g/kg TFE, and COX-2 gene expression was also reduced after treatment by three concentrations of TFE with 0.768, 0.545, and 0.478. The mRNA expression levels of p65 were 0.61, 0.43 and 0.27 for 0.25, 0.5 and 1.0 g/kg TFE and IκB levels were increased in a dose-dependent manner with 3.99, 13.69 and 34.36. 0.5 and 1.0 g/kg TFE inhibited the expression of ERK1/2 with 0.59 and 0.38, p38MAPK with 0.62 and 0.54, and JNK with 0.37 and 0.29, and JNK mRNA expression was 0.60 for 0.25 g/kg TFE.
Discussion and conclusion:
These results indicate that the regulatory mechanisms of TFE on gene expression in LPS-induced ALI mice include inhibition of the NF-κB and MAPK signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.