Scope
This study investigates the dual actions of 6‐gingerol in stimulating both plasma adiponectin and muscular adiponectin receptor signaling in naturally ageing rats.
Methods and results
Twenty‐two‐month‐old male SD rats were treated with 6‐gingerol (0.2 mg kg–1, once daily) for 7 weeks. 6‐Gingerol can attenuate age‐associated high plasma triglyceride, glucose, and insulin concentrations under fasting conditions as well as suppress the increase in the HOMA‐IR index and inhibit the decrease of muscular p‐Akt/Akt protein in ageing rats, which indicates an improvement of systemic and muscular insulin sensitivity. Accompanying these changes, treatment with 6‐gingerol attenuates excessive triglyceride accumulation, enhances mitochondrial function, and promotes a transition from a fast‐ to slow‐fiber type and muscle oxidative metabolism in the red gastrocnemius of ageing rats. More importantly, 6‐gingerol not only increases the plasma and adipose tissue adiponectin concentrations, but also elevates muscular AdipoR1 expression and activates downstream AMPK phosphorylation as well as upregulates PGC‐1α in vivo and in vitro.
Conclusion
6‐Gingerol may improve ectopic lipid accumulation, mitochondrial dysfunction, and insulin resistance in skeletal muscle of ageing rats. These effects rely, at least in part, on the elevated plasma adiponectin concentration and muscle AdipoR1 level to dually activate the AMPK/PGC‐1α signaling pathway.
Apple pomace and rosemary (AR) have been reported to contain rich bioactive molecules, which have numerous metabolic effects. Our preliminary work revealed that AR ameliorated fructose-induced insulin resistance in rats by modulating sarcolemmal CD36 and glucose transporter-4. The present study aimed to further examine how AR improves metabolic disorders by investigating the effect of AR on hepatic steatosis induced by fructose overconsumption. The results demonstrated that AR (100 mg/kg daily by gavage for 5 weeks) attenuated chronic liquid fructose consumption-induced increases in liver triglyceride content in rats. Mechanistically, reverse transcription-quantitative PCR and western blot analysis results indicated that AR reversed fructose-induced suppression of hepatic peroxisome proliferator-activated receptor α, carnitine palmitoyl-transferase 1α, sirtuin 1 and peroxisome proliferator-activated receptor-γ coactivator 1α, which were associated with the fatty acid oxidative (FAO) pathway. In addition, AR treatment decreased the expression levels of the pro-inflammatory proteins NF-κB and tumor necrosis factor-α. However, AR had no effect on the genes related to lipogenesis and the very low-density lipoprotein-export pathway in rat liver. Thus, the present results suggested that AR treatment diminished long-term fructose overconsumption-induced fatty liver, which was associated with enhanced FAO and suppressed inflammation.
Ageing often results in insulin resistance (IR) and chronic inflammation, and adipose is one of the tissues in which inflammation and IR occur earliest during this process. The present study investigated the effect and underlying mechanisms of ursolic acid (UA) on adipose IR and inflammation in ageing rats. Specific pathogen-free male Sprague-Dawley rats were randomly divided into 4 groups: i) Young normal (young); ii) untreated ageing (aged); and groups supplemented with UA either iii) low-UA 10 mg/kg (UA-L) or iv) high-50 mg/kg (UA-H). Animals in the UA-treated groups received 10 or 50 mg/kg UA (suspended in 5% Gum Arabic solution). The rats in the corresponding aged group and young groups received vehicle (5% Gum Arabic) alone. All rats were intragastrically treated once daily by oral gavage for 7 weeks. The day before the experiment terminated, overnight fasting blood (~700 µl) was collected and plasma was prepared to measure biochemical indicators; western blotting was performed to analyze the expression of insulin signaling proteins [(insulin receptor substrate 1 (IRS-1), phosphorylated (p)-IRS-1, PI3K, glucose transporter 4 (GLUT4), Akt and p-Akt)] and inflammatory factors (NF-κB, IL-6 and IL-1β) in the epididymis white adipose tissue (eWAT). The results revealed that treatment with UA-H decreased eWAT weight, the ratio of eWAT weight/body weight, fasted insulin and triglyceride levels, the homeostasis model assessment of insulin resistance and adipose tissue insulin resistance index in ageing rats, indicating the amelioration of systemic and adipose tissue IR, compared with the aged group. Mechanistically, UA-H administration upregulated p-protein kinase B, the ratio of p-Akt to protein kinase B and total and cellular membrane GLUT4 protein levels in eWAT of ageing rats. Conversely, UA inhibited the increase in NF-κB expression and proinflammatory cytokines IL-6 and IL-1β. However, these alterations were not observed in the rats of the aged group. Taken together, the findings of the present study indicated that UA may ameliorate adipose IR, which is associated with activation of the Akt-GLUT4 signaling pathway and inhibition of inflammation in ageing rats. These data provide a basis for the development of effective and safe drugs or functional substances, such as UA, for the prevention and treatment of metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.