The structural origin of enhanced piezoelectric performance and stability in KNN-based ceramics can be attributed to the hierarchical nanodomain architecture with phase coexistence.
Owing to growing environmental concerns, the development of lead-free piezoelectrics with comparable performance to the benchmark Pb(Zr,Ti)O3 (PZT) becomes of great urgency. However, a further enhancement of lead-free piezoelectrics based on existing strategies has reached a bottleneck. Here we achieve a slush polar state with multiphase coexistence in lead-free potassium–sodium niobate (KNN) piezoceramics, which shows a novel relaxor behavior, i.e., frequency dispersion at the transition between different ferroelectric phases. It is very different from the conventional relaxor behavior which occurs at the paraelectric–ferroelectric phase transition. We obtain an ultrahigh piezoelectric coefficient (d 33) of 650 ± 20 pC/N, the largest value of nontextured KNN-based ceramics, outperforming that of the commercialized PZT-5H. Atomic-resolution polarization mapping by Z-contrast imaging from different orientations reveals the entire material to comprise polar nanoregions with multiphase coexistence, which is again very different from conventional ferroelectric relaxors which have polar domains within a nonpolar matrix. Theoretical simulations validate the significantly decreased energy barrier and polarization anisotropy, which is facilitated by the high-density domain boundaries with easy polarization rotation bridging the multiphase-coexisting nanodomains. This work demonstrates a new strategy for designing lead-free piezoelectrics with further enhanced performance, which should also be applicable to other functional materials requiring a slush (flexible) state with respect to external stimulus.
The p53 tumor suppressor is a potent transcription factor that plays a key role in the regulation of cellular responses to stress. It is controlled by its negative regulator MDM2, which binds directly to p53 and inhibits its transcriptional activity. MDM2 also targets p53 for degradation by the proteasome. Many tumors produce high levels of MDM2, thereby impairing p53 function. Restoration of p53 activity by inhibiting the p53-MDM2 interaction may represent a novel approach to cancer treatment. RG7112 (2g) is the first clinical small-molecule MDM2 inhibitor designed to occupy the p53-binding pocket of MDM2. In cancer cells expressing wild-type p53, RG7112 stabilizes p53 and activates the p53 pathway, leading to cell cycle arrest, apoptosis, and inhibition or regression of human tumor xenografts. KEYWORDS: MDM2, p53, RG7112, protein−protein interaction, cancer p53 is a potent tumor suppressor that activates the transcription of a subset of genes controlling cell-cycle progression and apoptosis.1−3 Dysregulation of the p53 pathway, including mutation or deletion of the p53 gene and changes in downstream signaling molecules, is the most frequent alteration in human cancers.4 MDM2 is a negative regulator of p53 that binds the transactivation domain of p53 and inhibits its ability to activate transcription.5−8 MDM2 is also an E3 ubiquitin ligase that targets p53 for proteosomal degradation.9 In a variety of solid tumors and hematologic malignancies, MDM2 overexpression is one of the mechanisms by which the wildtype p53 function is impaired.10 Given the central role of MDM2 in regulating p53 activity and stability, developing small-molecule inhibitors of MDM2 could offer a novel approach to treating cancers. 11,12The crystal structure of a p53-derived peptide bound to the p53 binding domain of MDM2 revealed the existence of a deep hydrophobic clef on the surface of the MDM2 molecule. 13Three amino acid residues from the p53 peptide (Phe19, Trp23, and Leu26) play critical roles in the binding between the two proteins by projecting hydrophobic side-chains deep into the cavity of the MDM2 molecule. These structural features of the p53-MDM2 complex suggested the likelihood of identifying small-molecule inhibitors that can successfully block the interaction between the two proteins. Compounds with the ability to inhibit the binding between p53 and MDM2 have been reported. 14−17 We previously reported the discovery of a series of 4,5-dihydroimidazolines called Nutlins. These compounds, exemplified by compound 1 (Figure 1), were discovered through screening and subsequent medicinal chemistry optimization. 18 Compound 1, also known as Nutlin-3a, has become a tool of choice to study p53 biology and therapeutic applications.19 Although these early lead compounds have shown good cellular activity and provided the mechanistic proof-of-concept for inhibiting p53-MDM2 interaction for cancer therapy, their pharmacological properties were suboptimal for clinical development. Here, we describe
With growing concern over world environmental problems and increasing legislative restriction on using lead and lead-containing materials, a feasible replacement for lead-based piezoceramics is desperately needed. Herein, we report a large piezoelectric strain (d*) of 470 pm/V and a high Curie temperature (T) of 243 °C in (NaK)NbO-(BiLi)TiO-BaZrO lead-free ceramics by doping MnO. Moreover, excellent temperature stability is also observed from room temperature to 170 °C (430 pm/V at 100 °C and 370 pm/V at 170 °C). Thermally stimulated depolarization currents (TSDC) analysis reveals the reduced defects and improved ferroelectricity in MnO-doped piezoceramics from a macroscopic view. Local poling experiments and local switching spectroscopy piezoresponse force microscopy (SS-PFM) demonstrates the enhanced ferroelectricity and domain mobility from a microscopic view. Distinct grain growth and improvement in phase angle may also account for the enhancement of piezoelectric properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.