In our study, a retrieval method of temperature profiles is proposed which combines an improved one-dimensional variational algorithm (1D-Var) and artificial neural network algorithm (ANN), using FY-4A/GIIRS (Geosynchronous Interferometric Infrared Sounder) infrared hyperspectral data. First, according to the characteristics of the FY-4A/GIIRS observation data using the conventional 1D-Var, we introduced channel blacklists and discarded the channels that have a large negative impact on retrieval, then used the information capacity method for channel selection and introduced a neural network to correct the satellite observation data. The improved 1D-Var effectively used the observation information of 1415 channels, reducing the impact of the error of the satellite observation and radiative transfer model, and realizing the improvement of retrieval accuracy. We subsequently used the improved 1D-Var and ANN algorithms to retrieve the temperature profiles, respectively, from the GIIRS data. The results showed that the accuracy when using ANN is better than using improved 1D-Var in situations where the pressure ranges from 800 hPa to 1000 hPa. Therefore, we combined the improved 1D-Var and ANN method to retrieve temperature profiles for different pressure levels, calculating the error by taking sounding data published by the University of Wyoming as the true values. The results show that the average error of the retrieved temperature profiles is smaller than 2 K when using our method, this method makes the accuracy of the retrieved temperature profiles superior to the accuracy of the GIIRS products from 10 hPa to 575 hPa. All in all, through the combination of the physical retrieval method and the machine learning retrieval method, this paper can certainly provide a reference for improving the accuracy of products.
Satellite infrared hyperspectral instruments can obtain a wealth of atmospheric spectrum information. In order to obtain high-precision atmospheric temperature and humidity profiles, we used the traditional One-Dimensional Variational (1D-Var) retrieval algorithm, combined with the information capacity-weight function coverage method to select the spectrum channel. In addition, an Artificial Neural Network (ANN) algorithm was introduced to correct the satellite observation data error and compare it with the conventional error correction method. Finally, to perform the temperature and humidity profile retrieval calculation, we used the FY-3D satellite HIRAS (Hyperspectral Infrared Atmospheric Sounder) infrared hyperspectral data and combined the RTTOV (Radiative Transfer for TOVS) radiative transfer model to build an atmospheric temperature and humidity profile retrieval system. We used data on the European region from July to August 2020 to carry out the training and testing of the retrieval system, respectively, and used the balloon-retrieved sounding data of temperature and humidity published by the University of Wyoming as standard truth values to evaluate the retrieval accuracy. Our preliminary research results show that, compared with the retrieval results of conventional deviation correction, the introduction of ANN algorithm error correction can improve the retrieval accuracy of the retrieval system effectively and the RMSE (Root-Mean-Square Error) of the temperature and humidity has a maximum accuracy of improvement of about 0.5 K (The K represents the thermodynamic temperature unit) and 5%, respectively. The temperature and humidity results obtained by the retrieval system were compared with Global Forecast System (GFS) forecast data. The retrieved temperature RMSE was less than 1.5 K on average, which was better than that for the GFS; the humidity RMSE was less than 15% as a whole, and better than the forecast profile between 100 hpa (1 hpa is 100 pa, the pa represents the air pressure unit) and 600 hpa. Compared with AIRS (Atmospheric Infrared Sounder) products, the result of the retrieval system also had a higher accuracy. The main improvement of the temperature was at 200 hpa and 800 hpa, with maximum accuracy improvements of 2 K and 1.5 K, respectively. The RMSE of the humidity retrieved by the system was also better than the AIRS humidity products at most pressure levels, and the error of maximum difference could reach 15%. After combining the two algorithms, the FY-3D/HIRAS infrared hyperspectral retrieval system could obtain higher-precision temperature and humidity profiles, and relevant results could provide a reference for improving the accuracy of business products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.