Moraine dams, impounding glacial lakes, are among the weak natural dams because of their slope, freeboard and composition. Glacial lake outburst floods occurring due to the failure of moraine dams are significant hazards for the valley downstream the failure, as they possess huge amount of hydraulic energy that can kill thousands and destroy infrastructures and riverine landscape. Also, the entrainment of debris to the flow from the breaching process and downstream channel may develop the flow into a much bigger disaster or even a series of hazard chain. Ice and rock avalanche or landslide, glacier calving, degradation of ice cores, earthquake and atmospheric events trigger the breaching phenomenon which generates a series of waves overtopping the dam or seepage causing the failure of the dam. Various approaches have been discussed in this review paper to produce an understanding of the failure mechanism of moraine dams: experimental works, empirical relationships, analytical solutions, and numerical modelling. No concrete experimental investigations and parametric solutions pertained to the failure mechanism of moraine dam is found in the review, but various empirical relationships are discussed and suitable approaches for numerical modelling are suggested as per the requirement of the task. ARTICLE HISTORY
<p>Besides the numerous artificial dams, there are some other kind of dams distribute such as the glacier dams, moraine dams, landslide dams, and the debris flow dams in China. Especially, the landslide dams and debris flow ones widely distribute in southwest of China after the M8.0 Wenchuan earthquake. Much attention has been paid to the formation, stability, breach process, and the peak discharge prediction of a landslide dam. However few achievements are obtained on the debris flow dams even if the failure of a debris flow dam has posed great threat to the property and life of residents downstream. In this paper, based on the main difference between a landslide and debris flow dam, experiments were conducted by considering different clay content, the initial water content, and incoming water flow. It indicated that the failure duration of a debris flow dam was about 1.60 times as long as that than that of a landslide dam. The peak discharge at the debris flow dam breach was 5.38 L/s. However, the peak discharge at the landslide dam was 7.50 L/s, which was 1.39 times as big as that of a debris flow dam. Finally, by modifying the existing critical initialization condition for the landslide dams, the critical initialization condition for a debris flow dam was proposed.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.