Epitaxial thin films of CoFeO (CFO) have successfully been transferred from a SrTiO substrate onto a flexible polyimide substrate. By bending the flexible polyimide, different levels of uniaxial strain are continuously introduced into the CFO epitaxial thin films. Unlike traditional epitaxial strain induced by substrates, the strain from bending will not suffer from critical thickness limitation, crystalline quality variation, and substrate clamping, and more importantly, it provides a more intrinsic and reliable way to study strain-controlled behaviors in functional oxide systems. It is found that both the saturation magnetization and coercivity of the transferred films can be changed over the bending status and show a high accord with the movement of the curvature bending radius of the polyimide substrate. This reveals that the mechanical strain plays a critical role in tuning the magnetic properties of CFO thin films parallel and perpendicular to the film plane direction.
Mechanical flexibility of electronic devices has attracted much attention from research due to the great demand in practical applications and rich commercial value. Integration of functional oxide materials in flexible polymer materials has proven an effective way to achieve flexibility of functional electronic devices. However, the chemical and mechanical incompatibilities at the interfaces of dissimilar materials make it still a big challenge to synthesize high-quality single-crystalline oxide thin film directly on flexible polymer substrates. This study reports an improved method that is employed to successfully transfer a centimeter-scaled single-crystalline LiFe O thin film on polyimide substrate. Structural characterizations show that the transferred films have essentially no difference in comparison with the as-grown films with respect to the microstructure. In particular, the transferred LiFe O films exhibit excellent magnetic properties under various mechanical bending statuses and show excellent fatigue properties during the bending cycle tests. These results demonstrate that the improved transfer method provides an effective way to compose single-crystalline functional oxide thin films onto flexible substrates for applications in flexible and wearable electronics.
Interface engineered BaTiO₃/SrTiO₃ heterostructures were epitaxially grown on (001) MgO substrates by pulsed laser deposition. Microstructural characterizations by X-ray diffraction and transmission electron microscopy indicate that the as-grown heterostructures are c-axis oriented with sharp interfaces. The interface relationships between the substrate and multilayered structures were determined to be [001](SrTiO₃)//[001](BaTiO₃)//[001](MgO) and (100)(SrTiO₃)//(100)(BaTiO₃)//(100)(MgO). The high-frequency microwave (∼18 GHz) dielectric measurements reveal that the dielectric constant and dielectric loss of the nanolayered heterostructures are highly dependent upon the stacking period numbers and layer thicknesses. With the increase in the periodic number, or the decrease in each layer thickness, the dielectric constant dramatically increases and the dielectric loss tangent rapidly decreases. The strong interface effect were found when the combination period is larger than 16, or each STO layer is less than 6.0 nm. The optimized dielectric performance was achieved with the best value for the loss tangent (0.02) and the dielectric constant (1320), which suggests that the BTO/STO heterostructures be promising for the development of the room-temperature tunable microwave elements.
Ferromagnetic thin films of the A-site nano-ordered double perovskite LaBaCo(2)O(5.5+δ) (LBCO) were grown on (001) MgO, and their structural and magnetic properties were characterized. The as-grown films have an excellent epitaxial behavior with atomically sharp interfaces, with the c-axis of the LBCO structure lying in the film plane and the interface relationship given by (100)(LBCO)//(001)(MgO) and [001](LBCO)//[100](MgO) or [010](MgO). The as-grown LBCO films exhibit a giant magnetoresistance (54% at 40 K under 7 T) and an anomalous magnetic hysteresis, depending strongly on the temperature and the applied magnetic field scan width.
Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; −0.5 < δ < 0.5) by carefully monitoring the resistance changes under a switching flow of oxidizing gas (O2) and reducing gas (H2) in the temperature range of 250 ~ 800°C. A giant resistance change ΔR by three to four orders of magnitude in less than 0.1 s was found with a fast oscillation behavior in the resistance change rates in the ΔR vs. t plots, suggesting that the oxygen vacancy exchange diffusion with oxygen/hydrogen atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.