Background. The impaired osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs) is a major cause of bone remodeling imbalance and osteoporosis. The bicaudal C homologue 1 (BICC1) gene is a genetic regulator of bone mineral density (BMD) and promotes osteoblast differentiation. The purpose of this study is to explore the probable function of BICC1 in osteoporosis and osteogenic differentiation of aged BMSCs. Methods. We examined the GSE116925 microarray dataset obtained from the Gene Expression Omnibus (GEO) database. The GEO2R algorithm identified differentially expressed genes (DEGs) in Sca-1+ BMSCs from young (3 months old) and old (18 months old) mice. Then, to identify the most crucial genes, we used pathway enrichment analysis and a protein-protein interaction (PPI) network. Furthermore, starBase v2.0 was used to generate the regulatory networks between BICC1 and related competing endogenous RNAs (ceRNAs). NetworkAnalyst was used to construct TF-gene networks and TF-miRNA-gene networks of BICC1 and ceRNA. Furthermore, we investigated the Bicc1 expression in aged Sca-1-positive BMSCs. Result. We detected 923 DEGs and discovered that epidermal growth factor receptor (EGFR) was the top hub gene with a high degree of linkage. According to the findings of the PPI module analysis, EGFR was mostly engaged in cytokine signaling in immune system and inflammation-related signaling pathways. 282 ceRNAs were found to interact with the BICC1 gene. EGFR was not only identified as a hub gene but also as a BICC1-related ceRNA. Then, we predicted 11 common TF-genes and 7 miRNAs between BICC1 and EGFR. Finally, we found that BICC1 mRNA and EGFR mRNA were significantly overexpressed in aged Sca-1-positive BMSCs. Conclusion. As a genetic gene that affects bone mineral density, BICC1 may be a new target for clinical treatment of senile osteoporosis by influencing osteogenic differentiation of BMSCs through EGFR-related signaling. However, the application of the results requires support from more experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.