Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser89 is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S89 was substituted with G89 (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis.
The present study aimed to analyze the effects of estrogen deficiency on buccal alveolar bone proper and the periodontal ligament in ovariectomized (OVX) rats, compared with rats that had been subjected to sham treatment. Morphological and histological changes in the periodontium were analyzed using micro‑computed tomography and paraffin sectioning. Sections were stained using hematoxylin and eosin, and tartrate‑resistant acid phosphatase. Expression of receptor activator of nuclear factor‑κB ligand (RANKL), dentin matrix protein 1 C‑terminal (DMP1‑C) and osteopontin (OPN) were analyzed using immunohistochemistry. Histomorphometric analysis of buccal alveolar bone proper samples revealed porotic changes and disorganized bone structure in OVX rats. Furthermore, bone mineral density and pore spacing were significantly lower in OVX rats compared with sham rats. Porosity was significantly higher in OVX rats compared with sham rats (P<0.01). A greater number of osteoclasts were observed along the margins of the buccal alveolar bone proper samples from OVX rats compared with those from the sham rats. Expression of OPN and RANKL was significantly higher, and that of DMP1‑C was significantly lower, in OVX rats compared with sham rats. Ovariectomy‑induced osteoporosis is capable of changing the structure of buccal alveolar bone proper and the periodontal ligament, which is likely to increase the risk of periodontal disease.
Background: The family with sequence similarity 20-member C (Fam20C) kinase plays important roles in physiopathological process and is responsible for majority of the secreted phosphoproteome, including substrates associated with tumor cell migration. However, it remains unclear whether Fam20C plays a role in cancers. Here, we aimed to analyze the expression and prognostic value of Fam20C in pan-cancer and to gain insights into the association between Fam20C and immune infiltration. Methods: We analyzed Fam20C expression patterns and the associations between Fam20C expression levels and prognosis in pan-cancer via the ONCOMINE, TIMER (Tumor Immune Estimation Resource), PrognoScan, GEPIA (Gene Expression Profiling Interactive Analysis), and Kaplan–Meier Plotter databases. After that, GEPIA and TIMER databases were applied to investigate the relations between Fam20C expression and immune infiltration across different cancer types, especially BLCA (bladder urothelial carcinoma), LGG (brain lower grade glioma), and STAD (stomach adenocarcinoma). Results: Compared with adjacent normal tissues, Fam20C was widely expressed across many cancers. In general, Fam20C showed a detrimental role in pan-cancer, it was positively associated with poor survival of BLCA, LGG, and STAD patients. Specifically, based on TCGA (The Cancer Genome Atlas) database, a high expression level of Fam20C was associated with worse prognostic value in stages T2–T4 and stages N0–N2 in the cohort of STAD patients. Moreover, Fam20C expression had positive associations with immune infiltration, including CD4+ T cells, macrophages, neutrophils, and dendritic cells, and other diverse immune cells in BLCA, LGG, and STAD. Conclusion: Fam20C may serve as a promising prognostic biomarker in pan-cancer and has positive associations with immune infiltrates.
The aim of the present study was to investigate growth factors release kinetics for the combination of fresh platelet-rich fibrin (F-PRF) and lyophilized PRF (L-PRF) with different ratios to promote bone tissue regeneration. First, we quantified the level of transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and platelet-derived growth factor-AB (PDGF-AB) in vitro and analyzed their release kinetics from F-PRF, L-PRF, and the fresh/lyophilized PRF in different weight ratios (F:L=1:1, 1:3, 1:5). The second experimental phase was to investigate the proliferation and differentiation of bone mesenchymal stem cells (BMSCs) as a functional response to the factors released. To further test the osteogenic potential in vivo, different scaffolds (F-PRF, or L-PRF, or F:L=1:1) were implanted in rabbit cranial bone defects. There was a statistically significant increase in proliferation and differentiation of BMSCs when the culture medium contained different PRF exudates collected at day 14 compared with the negative control group. The results showed that the new bone formation in the fresh/lyophilized PRF (1:1) was much more than that of other groups in defects at both 6 and 12 weeks. Our data suggested growth factor concentration and release kinetics as a consequence of fresh and lyophilized PRF combination, which is an effective way for promoting bone regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.