Human dental pulp stem cells (hDPSCs) possess self-renewal and osteogenic differentiation properties, and have been used for orofacial bone regeneration and periodontal treatment. Aspirin has been demonstrated to enhance the regeneration of bone marrow mesenchymal stem cells (MSCs); however, the impact of aspirin on the osteogenic differentiation of hDPSCs remains unknown. In the present study, hDPSCs were characterized by flow cytometry, while their clonogenic potential and multipotency were assessed using alizarin red, Oil red O and alcian blue staining. The effect of aspirin on hDPSC viability was assessed using Cell Counting Kit-8 assay. Osteogenic capacity was examined by alkaline phosphatase activity, alizarin red staining, reverse transcription-polymerase chain reaction and western blotting. Furthermore, in vivo cranial defects were established in Sprague-Dawley rats to evaluate the effect of aspirin on hDPSC-based bone regeneration. Anorganic bovine bone was used as a bone replacement material and as the carrier for hDPSCs. New bone formation was observed through radiographic and histological analysis. The study demonstrated that hDPSCs expressed MSC markers and possessed multipotency in vitro. Aspirin was non-toxic to hDPSCs at a concentration of ≤100 μg/ml and enhanced the osteogenesis of hDPSCs in vitro. Aspirin significantly increased hDPSC-based bone formation in the rat cranial defect model at 8 or 12 weeks post-implantation (P<0.05). The data suggested that aspirin promotes the osteogenic potential of hDPSCs in vitro and in vivo. Overall, the present study indicated that aspirin improves the bone regeneration capacity of hDPSCs.
A combination of computational tools will be useful in mining candidate genes for periodontitis. These theoretical results provide new clues for experimental biologists to plan targeted experiments.
ObjectiveCandidate gene association studies and genome-wide association studies (GWAs) have identified a large number of single nucleotide polymorphisms (SNPs) loci affecting susceptibility to rheumatoid arthritis (RA). However, for the same locus, some studies have yielded inconsistent results. To assess all the available evidence for association, we performed a meta-analysis on previously published case-control studies investigating the association between SNPs and RA.MethodsTwo hundred and sixteen studies, involving 125 SNPs, were reviewed. For each SNP, three genetic models were considered: the allele, dominant and recessive effects models. For each model, the effect summary odds ratio (OR) and 95% CIs were calculated. Cochran’s Q-statistics were used to assess heterogeneity. If the heterogeneity was high, a random effects model was used for meta-analysis, otherwise a fixed effects model was used.ResultsThe meta-analysis results showed that: (1) 30, 28 and 26 SNPs were significantly associated with RA (P<0.01) for the allele, dominant, and recessive models, respectively. (2) rs2476601 (PTPN22) showed the strongest association for all the three models: OR = 1.605, 95% CI: 1.540–1.672, P<1.00E−15 for the T-allele; OR = 1.638, 95% CI: 1.565–1.714, P<1.00E−15 for the T/T+T/C genotype and OR = 2.544, 95% CI: 2.173–2.978, P<1.00E−15 for the T/T genotype. (3) Only 23 (18.4%), 13 (10.4%) and 15 (12.0%) SNPs had high heterogeneity (P<0.01) for the three models, respectively. (4) For some of the SNPs, there was no publication bias according to Funnel plots and Egger’s regression tests (P<0.01). For the other SNPs, the associations were tested in only a few studies, and may have been subject to publication bias. More studies on these loci are required.ConclusionOur meta-analysis provides a comprehensive evaluation of the RA association studies from the past two decades. The detailed meta-analysis results are available at: http://210.46.85.180/DRAP/index.php/Metaanalysis/index.
Background: The family with sequence similarity 20-member C (Fam20C) kinase plays important roles in physiopathological process and is responsible for majority of the secreted phosphoproteome, including substrates associated with tumor cell migration. However, it remains unclear whether Fam20C plays a role in cancers. Here, we aimed to analyze the expression and prognostic value of Fam20C in pan-cancer and to gain insights into the association between Fam20C and immune infiltration. Methods: We analyzed Fam20C expression patterns and the associations between Fam20C expression levels and prognosis in pan-cancer via the ONCOMINE, TIMER (Tumor Immune Estimation Resource), PrognoScan, GEPIA (Gene Expression Profiling Interactive Analysis), and Kaplan–Meier Plotter databases. After that, GEPIA and TIMER databases were applied to investigate the relations between Fam20C expression and immune infiltration across different cancer types, especially BLCA (bladder urothelial carcinoma), LGG (brain lower grade glioma), and STAD (stomach adenocarcinoma). Results: Compared with adjacent normal tissues, Fam20C was widely expressed across many cancers. In general, Fam20C showed a detrimental role in pan-cancer, it was positively associated with poor survival of BLCA, LGG, and STAD patients. Specifically, based on TCGA (The Cancer Genome Atlas) database, a high expression level of Fam20C was associated with worse prognostic value in stages T2–T4 and stages N0–N2 in the cohort of STAD patients. Moreover, Fam20C expression had positive associations with immune infiltration, including CD4+ T cells, macrophages, neutrophils, and dendritic cells, and other diverse immune cells in BLCA, LGG, and STAD. Conclusion: Fam20C may serve as a promising prognostic biomarker in pan-cancer and has positive associations with immune infiltrates.
Oral squamous cell carcinoma (OSCC), one of the 10 most common types of neoplasms in the US, constitutes ~90% of all cases of oral malignancies. Chemoresistance and metastasis are difficult to avoid during the course of treatment, leading to a poor prognosis and a high mortality rate for patients with OSCC. Autophagy, a critical conserved cellular process, has been reported to be highly associated with the regulation of chemoresistance and metastasis of cancer cells. The present study investigated the role of karyopherin α2 (KPNA2), a member of the importin α family, which may serve an important role in p53 nucleocytoplasmic transport in the process of OSCC autophagy. In the CAL-27, SCC-15 and Tca8113 OSCC cell lines, we observed that the downregulation of KPNA2 suppressed cell migration and cisplatin resistance, using wound-healing, Transwell and CCK-8 assays. Additionally, the results of western blot analysis and transmission electron microscopy (TEM) analysis indicated that the knockdown of KPNA2 inhibited autophagy. We confirmed that the inhibition of autophagy with anti-autophagy agents decreased the migration and cisplatin resistance of OSCC cells. We hypothesized that the suppression of cell migration and cisplatin resistance induced by KPNA2 knockdown may be associated with the inhibition of autophagy. To identify the underlying mechanism, further experiments determined that KPNA2 affects the level of autophagy via regulating the p53 nuclear import. Thus, the present study demonstrated that the function of KPNA2 in the process of autophagy may be p53-dependent, and by regulating the translocation of p53, KPNA2 can support autophagy to promote the chemoresistance and metastasis of OSCC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.