BackgroundPrenatal stress is considered a risk factor for anxiety disorder. Downregulation in the expression of GABAergic gene, that is, glutamic acid decarboxylase 67, associated with DNA methyltransferase overexpression in GABAergic neurons has been regarded as a characteristic component of anxiety disorder. Prenatal stress has an adverse effect on the development of the basolateral amygdala, which is a key region in anxiety regulation. The aim of this study is to analyze the possibility of epigenetic alterations of GABAergic neurons in the basolateral amygdala participating in prenatal stress-induced anxiety.MethodsBehavioral tests were used to explore the prenatal stress-induced anxiety behaviors of female adult mice. Real-time RT-PCR, western blot, chromatin immunoprecipitation, and electrophysiological analysis were employed to detect epigenetic changes of GABAergic system in the basolateral amygdala.ResultsPrenatal stress mice developed an anxiety-like phenotype accompanied by a significant increase of DNA methyltransferase 1 and a reduced expression of glutamic acid decarboxylase 67 in the basolateral amygdala. Prenatal stress mice also showed the increased binding of DNA methyltransferase 1 and methyl CpG binding protein 2 to glutamic acid decarboxylase 67 promoter region. The decrease of glutamic acid decarboxylase 67 transcript was paralleled by an enrichment of 5-methylcytosine in glutamic acid decarboxylase 67 promoter regions. Electrophysiological study revealed the increase of postsynaptic neuronal excitability in the cortical-basolateral amygdala synaptic transmission of prenatal stress mice. 5-Aza-deoxycytidine treatment restored the increased synaptic transmission and anxiety-like behaviors in prenatal stress mice via improving GABAergic system.ConclusionThe above results suggest that DNA epigenetic modifications of GABAergic interneurons in the basolateral amygdala participate in the etiology of anxiety-like phenotype in prenatal stress mice.
Background
Prenatal stress (PRS) is considered a risk factor for depressive disorder. Adult hippocampal neurogenesis is believed to play a role in the regulation of affective behaviors. GABAergic interneuron is a key modulator in adult hippocampal neurogenesis. Growing evidence indicates that PRS has adverse effects on adult hippocampal neurogenesis and DNA epigenetic modifications of the GABAergic system. The aim of this study was to investigate whether epigenetic GABAergic dysfunction participates in the negative impact of PRS on adult hippocampal neurogenesis and related emotional behaviors.
Methods
Behavioral tests were used to explore PRS-induced depression-like behaviors of adult female mice. Immunohistochemistry staining, real-time reverse transcription-polymerase chain reaction, western blot, and chromatin immunoprecipitation were employed to detect adult neurogenesis and epigenetic changes of the GABAergic system in the hippocampus of PRS mice.
Results
PRS mice developed a depression phenotype accompanied by the inhibited maturation of hippocampal newborn neurons. Compared with control mice, PRS mice showed decreased expression of glutamic acid decarboxylase 67 at the mRNA and protein levels. GABAA receptor agonist phenobarbital could rectify the decrease of 5-bromo-2-deoxyuridine/neuronal nuclei double-positive (BrdU+/NeuN+) cells in PRS mice. PRS mice also showed increased expression of DNA methyltransferase 1 and increased binding of DNA methyltransferase 1 to glutamic acid decarboxylase 67 promoter region. The treatment with DNA methyltransferase 1 inhibitor 5-aza-deoxycytidine restored the decrease of BrdU+/NeuN+ cells and depression-like behaviors in PRS mice via improving GABAergic system.
Conclusions
The present results indicate that epigenetic changes of the GABAergic system are responsible for adult hippocampus neurogenesis and depression-like behaviors in PRS mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.