1The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has led to accelerated 2 efforts to develop therapeutics, diagnostics, and vaccines to mitigate this public health 3 emergency. A key target of these efforts is the spike (S) protein, a large trimeric class I fusion 4 protein that is metastable and difficult to produce recombinantly in large quantities. Here, we 5 designed and expressed over 100 structure-guided spike variants based upon a previously 6 determined cryo-EM structure of the prefusion SARS-CoV-2 spike. Biochemical, biophysical 7 and structural characterization of these variants identified numerous individual substitutions that 8 increased protein yields and stability. The best variant, HexaPro, has six beneficial proline 9 substitutions leading to ~10-fold higher expression than its parental construct and is able to 10 withstand heat stress, storage at room temperature, and multiple freeze-thaws. A 3.2 Å-resolution 11 cryo-EM structure of HexaPro confirmed that it retains the prefusion spike conformation. High-12 yield production of a stabilized prefusion spike protein will accelerate the development of 13 vaccines and serological diagnostics for SARS-CoV-2. 14 3 INTRODUCTION 15 Coronaviruses are enveloped viruses containing positive-sense RNA genomes. Four human 16 coronaviruses generally cause mild respiratory illness and circulate annually. However, SARS-17 CoV and MERS-CoV were acquired by humans via zoonotic transmission and caused outbreaks 18 of severe respiratory infections with high case-fatality rates in 2002 and 2012, respectively 1,2 . 19 SARS-CoV-2 is a novel betacoronavirus that emerged in Wuhan, China in December 2019 and 20 is the causative agent of the ongoing COVID-19 pandemic 3,4 . As of May 26, 2020, the WHO has 21 reported over 5 million cases and 350,000 deaths worldwide. Effective vaccines, therapeutic 22 antibodies and small-molecule inhibitors are urgently needed, and the development of these 23 interventions is proceeding rapidly. 24 Coronavirus virions are decorated with a spike (S) glycoprotein that binds to host-cell 25 receptors and mediates cell entry via fusion of the host and viral membranes 5 . S proteins are 26 trimeric class I fusion proteins that are expressed as a single polypeptide that is subsequently 27cleaved into S1 and S2 subunits by cellular proteases 6,7 . The S1 subunit contains the receptor-28 binding domain (RBD), which, in the case of SARS-CoV-2, recognizes the angiotensin-29 converting enzyme 2 (ACE2) receptor on the host-cell surface [8][9][10] . The S2 subunit mediates 30 membrane fusion and contains an additional protease cleavage site, referred to as S2′, that is 31 adjacent to a hydrophobic fusion peptide. Binding of the RBD to ACE2 triggers S1 dissociation, 32 allowing for a large rearrangement of S2 as it transitions from a metastable prefusion 33 conformation to a highly stable postfusion conformation 6,11 . During this rearrangement, the 34 fusion peptide is inserted into the host-cell membrane after cleavage at S2′, and two h...
Background and Purpose-We measured the temporal evolution of the T2 and diffusion tensor imaging parameters after transient and permanent cerebral middle cerebral artery occlusion (MCAo) in macaques, and compared it to standard histological analysis at the study end point. Methods-Stroke was created in adult male macaques by occluding a middle cerebral artery branch for 3 hours (transient MCAo, nϭ4 or permanent occlusion, nϭ3). Conventional MRI and diffusion tensor imaging scans were performed 0 (acute day), 1, 3, 7, 10, 17, and 30 days after MCAo. Animals were euthanized after the final scan and the brains removed for histological analysis. Results-Apparent diffusion coefficient in the lesion was decreased acutely, fractional anisotropy was elevated, and T2 remained normal. Thereafter, apparent diffusion coefficient increased above normal, fractional anisotropy decreased to below normal, T2 increased to a maximum and then declined. Reperfusion at 3 hours accelerated these MRI changes.Only the fractional anisotropy value was significantly different between transient and permanent groups at 30 days. Final MRI-defined fractional lesion volumes were well correlated with corresponding histological lesion volumes. Permanent MCAO animals showed more severe histological damage than their transient MCAO counterparts, especially myelin damage and axonal swelling. Conclusions-Overall, the MRI evolution of stroke in macaques was closer to what has been observed in humans than in rodent models. This work supports the use of serial MRI in stroke studies in nonhuman primates.
The development of luminescent materials with concurrent multimodal emissions is a great challenge to improve security and data storage density. Lanthanide‐doped nanocrystals are particularly appropriate for such applications for their abundant intermediate energy states and distinguishable spectroscopic profiles. However, traditional lanthanide luminescent nanoparticles have a limited capacity for information storage or complexity to shield against counterfeiting. Herein, it is demonstrated that the combination of upconverting and downshifting emissions in a particulate designed lanthanide‐doped core@multishell nanoarchitecture allows the generation of multicolor dual‐modal luminescence over a wide spectral range for complex information storage. Precise control of lanthanide dopants distribution in the core and distinct shells enables simultaneous excitation of 980/808 nm focusing/defocusing laser and 254 nm light and produces complex upconverting emissions from Er, Tm, Eu, and Tb via multiphoton energy transfer processes and downshifting emissions from Eu and Tb via efficient energy transfer from Ce to Eu/Tb in Gd‐assisted lattices. It is experimentally proven that multiple visualized anti‐counterfeit and information encryption with facile decryption and authentication using screen‐printing inks containing the present core@multishell nanocrystals are practically applicable by selecting different excitation modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.