In this work, we successfully developed a fluorinated cross-linked polymer Bragg waveguide grating-based optical biosensor to detect effective drug concentrations of ginkgolide A for the inhibition of pulmonary microvascular endothelial cell (PMVEC) apoptosis. Fluorinated photosensitive polymer SU-8 (FSU-8) as the sensing core layer and polymethyl methacrylate (PMMA) as the sensing window cladding were synthesized. The effective drug concentration range (5–10 µg/mL) of ginkgolide A for inhibition of PMVEC apoptosis was analyzed and obtained by pharmacological studies. The structure of the device was optimized to be designed and fabricated by direct UV writing technology. The properties of the biosensor were simulated with various refractive indices of different drug concentrations. The actual sensitivity of the biosensor was measured as 1606.2 nm/RIU. The resolution and detection limit were characterized as 0.05 nm and 3 × 10−5 RIU, respectively. The technique is suitable for safe and accurate detection of effective organic drug dosages of Chinese herbal ingredients.
In this work, a photonic device integration platform capable of integration of active-passive InP-based photonic devices without the use of material regrowth is introduced. The platform makes use of an adiabatic active-layer waveguide connection (ALWC) to move an optical beam between active and passive devices. The performance of this platform is analyzed using an example made up of four main sections: (1) a fiber coupling section for enabling vertical beam coupling from optical fiber into the photonic chip using a mode-matched surface grating with apodized duty cycles; (2) a transparent waveguide section for realizing passive photonic devices; (3) an adiabatic mode connection structure for moving the optical beam between passive and active device sections; and (4) an active device section for realizing active photonic devices. It is shown that the coupled surface grating, when added with a bottom gold reflector, can achieve a high chip-to-fiber coupling efficiency (CE) of 88.3% at 1550 nm. The adiabatic active-layer mode connection structure has an optical loss of lower than 1% (CE > 99%). The active device section can achieve an optical gain of 20 dB/mm with the use of only 3 quantum wells. The optimized structural parameters of the entire waveguide module are analyzed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.