One of the most fundamental questions in biology is what types of cells form different tissues and organs in a functionally coordinated fashion. Larger-scale single-cell sequencing and biology experiment studies are now rapidly opening up new ways to track this question by revealing substantial cell markers for distinguishing different cell types in tissues. Here, we developed the CellMarker database (http://biocc.hrbmu.edu.cn/CellMarker/ or http://bio-bigdata.hrbmu.edu.cn/CellMarker/), aiming to provide a comprehensive and accurate resource of cell markers for various cell types in tissues of human and mouse. By manually curating over 100 000 published papers, 4124 entries including the cell marker information, tissue type, cell type, cancer information and source, were recorded. At last, 13 605 cell markers of 467 cell types in 158 human tissues/sub-tissues and 9148 cell makers of 389 cell types in 81 mouse tissues/sub-tissues were collected and deposited in CellMarker. CellMarker provides a user-friendly interface for browsing, searching and downloading markers of diverse cell types of different tissues. Furthermore, a summarized marker prevalence in each cell type is graphically and intuitively presented through a vivid statistical graph. We believe that CellMarker is a comprehensive and valuable resource for cell researches in precisely identifying and characterizing cells, especially at the single-cell level.
High functional heterogeneity of cancer cells poses a major challenge for cancer research. Single-cell sequencing technology provides an unprecedented opportunity to decipher diverse functional states of cancer cells at single-cell resolution, and cancer scRNA-seq datasets have been largely accumulated. This emphasizes the urgent need to build a dedicated resource to decode the functional states of cancer single cells. Here, we developed CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/ or http://202.97.205.69/CancerSEA/), the first dedicated database that aims to comprehensively explore distinct functional states of cancer cells at the single-cell level. CancerSEA portrays a cancer single-cell functional state atlas, involving 14 functional states (including stemness, invasion, metastasis, proliferation, EMT, angiogenesis, apoptosis, cell cycle, differentiation, DNA damage, DNA repair, hypoxia, inflammation and quiescence) of 41 900 cancer single cells from 25 cancer types. It allows querying which functional states are associated with the gene (or gene list) of interest in different cancers. CancerSEA also provides functional state-associated PCG/lncRNA repertoires across all cancers, in specific cancers, and in individual cancer single-cell datasets. In summary, CancerSEA provides a user-friendly interface for comprehensively searching, browsing, visualizing and downloading functional state activity profiles of tens of thousands of cancer single cells and the corresponding PCGs/lncRNAs expression profiles.
: Systematically tracking the tumor immunophenotype is required to understand the mechanisms of cancer immunity and improve clinical benefit of cancer immunotherapy. However, progress in current research is hindered by the lack of comprehensive immune activity resources and easy-to-use tools for biologists, clinicians, and researchers to conveniently evaluate immune activity during the "cancer-immunity cycle." We developed a user-friendly one-stop shop web tool called TIP to comprehensively resolve tumor immunophenotype. TIP has the capability to rapidly analyze and intuitively visualize the activity of anticancer immunity and the extent of tumor-infiltrating immune cells across the seven-step cancer-immunity cycle. Also, we precalculated the pan-cancer immunophenotype for 11,373 samples from 33 The Cancer Genome Atlas human cancers that allow users to obtain and compare immunophenotype of pan-cancer samples. We expect TIP to be useful in a large number of emerging cancer immunity studies and development of effective immunotherapy biomarkers. TIP is freely available for use at http://biocc.hrbmu.edu.cn/TIP/. SIGNIFICANCE: TIP is a one-stop shop platform that can help biologists, clinicians, and researchers conveniently evaluate anticancer immune activity with their own gene expression data..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.