One of the most fundamental questions in biology is what types of cells form different tissues and organs in a functionally coordinated fashion. Larger-scale single-cell sequencing and biology experiment studies are now rapidly opening up new ways to track this question by revealing substantial cell markers for distinguishing different cell types in tissues. Here, we developed the CellMarker database (http://biocc.hrbmu.edu.cn/CellMarker/ or http://bio-bigdata.hrbmu.edu.cn/CellMarker/), aiming to provide a comprehensive and accurate resource of cell markers for various cell types in tissues of human and mouse. By manually curating over 100 000 published papers, 4124 entries including the cell marker information, tissue type, cell type, cancer information and source, were recorded. At last, 13 605 cell markers of 467 cell types in 158 human tissues/sub-tissues and 9148 cell makers of 389 cell types in 81 mouse tissues/sub-tissues were collected and deposited in CellMarker. CellMarker provides a user-friendly interface for browsing, searching and downloading markers of diverse cell types of different tissues. Furthermore, a summarized marker prevalence in each cell type is graphically and intuitively presented through a vivid statistical graph. We believe that CellMarker is a comprehensive and valuable resource for cell researches in precisely identifying and characterizing cells, especially at the single-cell level.
Long noncoding RNAs (lncRNAs) are emerging as a class of important regulators participating in various biological functions and disease processes. With the widespread application of next-generation sequencing technologies, large numbers of lncRNAs have been identified, producing plenty of lncRNA annotation resources in different contexts. However, at present, we lack a comprehensive overview of these lncRNA annotation resources. In this study, we reviewed 24 currently available lncRNA annotation resources referring to > 205 000 lncRNAs in over 50 tissues and cell lines. We characterized these annotation resources from different aspects, including exon structure, expression, histone modification and function. We found many distinct properties among these annotation resources. Especially, these resources showed diverse chromatin signatures, remarkable tissue and cell type dependence and functional specificity. Our results suggested the incompleteness and complementarity of current lncRNA annotations and the necessity of integration of multiple resources to comprehensively characterize lncRNAs. Finally, we developed 'LNCat' (lncRNA atlas, freely available at http://biocc.hrbmu.edu.cn/LNCat/), a user-friendly database that provides a genome browser of lncRNA structures, visualization of different resources from multiple angles and download of different combinations of lncRNA annotations, and supports rapid exploration, comparison and integration of lncRNA annotation resources. Overall, our study provides a comprehensive comparison of numerous lncRNA annotations, and can facilitate understanding of lncRNAs in human disease.
Breast cancer is a very complex and heterogeneous disease with variable molecular mechanisms of carcinogenesis and clinical behaviors. The identification of prognostic risk factors may enable effective diagnosis and treatment of breast cancer. In particular, numerous gene-expression-based prognostic signatures were developed and some of them have already been applied into clinical trials and practice. In this study, we summarized several representative gene-expression-based signatures with significant prognostic value and separately assessed their ability of prognosis prediction in their originally targeted populations of breast cancer. Notably, many of the collected signatures were originally designed to predict the outcomes of estrogen receptor positive (ER+) patients or the whole breast cancer cohort; there are no typical signatures used for the prognostic prediction in a specific population of patients with the intrinsic subtype. We thus attempted to identify subtype-specific prognostic signatures via a computational framework for analyzing multi-omics profiles and patient survival. For both the discovery and an independent data set, we confirmed that subtype-specific signature is a strong and significant independent prognostic factor in the corresponding cohort. These results indicate that the subtype-specific prognostic signature has a much higher resolution in the risk stratification, which may lead to improved therapies and precision medicine for patients with breast cancer.
Large-scale sequencing studies discovered substantial genetic variants occurring in enhancers which regulate genes via long range chromatin interactions. Importantly, such variants could affect enhancer regulation by changing transcription factor bindings or enhancer hijacking, and in turn, make an essential contribution to disease progression. To facilitate better usage of published data and exploring enhancer deregulation in various human diseases, we created DiseaseEnhancer (http://biocc.hrbmu.edu.cn/DiseaseEnhancer/), a manually curated database for disease-associated enhancers. As of July 2017, DiseaseEnhancer includes 847 disease-associated enhancers in 143 human diseases. Database features include basic enhancer information (i.e. genomic location and target genes); disease types; associated variants on the enhancer and their mediated phenotypes (i.e. gain/loss of enhancer and the alterations of transcription factor bindings). We also include a feature on our website to export any query results into a file and download the full database. DiseaseEnhancer provides a promising avenue for researchers to facilitate the understanding of enhancer deregulation in disease pathogenesis, and identify new biomarkers for disease diagnosis and therapy.
Systematic sequencing of cancer genomes has revealed prevalent heterogeneity, with patients harboring various combinatorial patterns of genetic alteration. In particular, a phenomenon that a group of genes exhibits mutually exclusive patterns has been widespread across cancers, covering a broad spectrum of crucial cancer pathways. Recently, there is considerable evidence showing that, mutual exclusivity reflects alternative functions in tumor initiation and progression, or suggests adverse effects of their concurrence. Given its importance, numerous computational approaches have been proposed to study mutual exclusivity using genomic profiles alone, or by integrating networks and phenotypes. Some of them have been routinely used to explore genetic associations, which lead to a deeper understanding of carcinogenic mechanisms and reveals unexpected tumor vulnerabilities. Here, we present an overview of mutual exclusivity from the perspective of cancer genome. We describe the common hypothesis underlying mutual exclusivity, summarize the strategies for the identification of significant mutually exclusive patterns, compare the performance of representative algorithms from simulated data sets and discuss their common confounders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.