Long noncoding RNAs (lncRNAs) are emerging as a class of important regulators participating in various biological functions and disease processes. With the widespread application of next-generation sequencing technologies, large numbers of lncRNAs have been identified, producing plenty of lncRNA annotation resources in different contexts. However, at present, we lack a comprehensive overview of these lncRNA annotation resources. In this study, we reviewed 24 currently available lncRNA annotation resources referring to > 205 000 lncRNAs in over 50 tissues and cell lines. We characterized these annotation resources from different aspects, including exon structure, expression, histone modification and function. We found many distinct properties among these annotation resources. Especially, these resources showed diverse chromatin signatures, remarkable tissue and cell type dependence and functional specificity. Our results suggested the incompleteness and complementarity of current lncRNA annotations and the necessity of integration of multiple resources to comprehensively characterize lncRNAs. Finally, we developed 'LNCat' (lncRNA atlas, freely available at http://biocc.hrbmu.edu.cn/LNCat/), a user-friendly database that provides a genome browser of lncRNA structures, visualization of different resources from multiple angles and download of different combinations of lncRNA annotations, and supports rapid exploration, comparison and integration of lncRNA annotation resources. Overall, our study provides a comprehensive comparison of numerous lncRNA annotations, and can facilitate understanding of lncRNAs in human disease.
Retinoblastoma (Rb) is the most prevalent intraocular malignancy in children, with a worldwide survival rate <30%. We have developed a cancerous model of Rb in retinal organoids derived from genetically engineered human embryonic stem cells (hESCs) with a biallelic mutagenesis of the RB1 gene. These organoid Rbs exhibit properties highly consistent with Rb tumorigenesis, transcriptome, and genome-wide methylation. Single-cell sequencing analysis suggests that Rb originated from ARR3-positive maturing cone precursors during development, which was further validated by immunostaining. Notably, we found that the PI3K-Akt pathway was aberrantly deregulated and its activator spleen tyrosine kinase (SYK) was significantly up-regulated. In addition, SYK inhibitors led to remarkable cell apoptosis in cancerous organoids. In conclusion, we have established an organoid Rb model derived from genetically engineered hESCs in a dish that has enabled us to trace the cell of origin and to test novel candidate therapeutic agents for human Rb, shedding light on the development and therapeutics of other malignancies.
Breast cancer is a very complex and heterogeneous disease with variable molecular mechanisms of carcinogenesis and clinical behaviors. The identification of prognostic risk factors may enable effective diagnosis and treatment of breast cancer. In particular, numerous gene-expression-based prognostic signatures were developed and some of them have already been applied into clinical trials and practice. In this study, we summarized several representative gene-expression-based signatures with significant prognostic value and separately assessed their ability of prognosis prediction in their originally targeted populations of breast cancer. Notably, many of the collected signatures were originally designed to predict the outcomes of estrogen receptor positive (ER+) patients or the whole breast cancer cohort; there are no typical signatures used for the prognostic prediction in a specific population of patients with the intrinsic subtype. We thus attempted to identify subtype-specific prognostic signatures via a computational framework for analyzing multi-omics profiles and patient survival. For both the discovery and an independent data set, we confirmed that subtype-specific signature is a strong and significant independent prognostic factor in the corresponding cohort. These results indicate that the subtype-specific prognostic signature has a much higher resolution in the risk stratification, which may lead to improved therapies and precision medicine for patients with breast cancer.
Genome-wide association studies in combination with single-cell genomic atlases can provide insights into the mechanisms of disease-causal genetic variation. However, identification of disease-relevant or trait-relevant cell types, states and trajectories is often hampered by sparsity and noise, particularly in the analysis of single-cell epigenomic data. To overcome these challenges, we present SCAVENGE, a computational algorithm that uses network propagation to map causal variants to their relevant cellular context at single-cell resolution. We demonstrate how SCAVENGE can help identify key biological mechanisms underlying human genetic variation, applying the method to blood traits at distinct stages of human hematopoiesis, to monocyte subsets that increase the risk for severe Coronavirus Disease 2019 (COVID-19) and to intermediate lymphocyte developmental states that predispose to acute leukemia. Our approach not only provides a framework for enabling variant-to-function insights at single-cell resolution but also suggests a more general strategy for maximizing the inferences that can be made using single-cell genomic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.