Precise manipulation of optical properties through the structure‐evolution of plasmonic nanoparticles is of great interest in biomedical fields including bioimaging and phototherapy. However, previous success has been limited to fixed assembled structures or visible–NIR‐I absorption. Here, an activatable NIR‐II plasmonic theranostics system based on silica‐encapsulated self‐assembled gold nanochains (AuNCs@SiO2) for accurate tumor diagnosis and effective treatment is reported. This transformable chain structure breaks through the traditional molecular imaging window, whose absorption can be redshifted from the visible to the NIR‐II region owing to the fusion between adjacent gold nanoparticles in the restricted local space of AuNCs@SiO2 triggered by the high H2O2 level in the tumor microenvironment (TME), leading to the generation of a new string‐like structure with strong NIR‐II absorption, which is further confirmed by finite‐difference‐time‐domain (FDTD) simulation. With the TME‐activated characteristics, AuNCs@SiO2 exhibits excellent properties for photoacoustic imaging and a high photothermal conversion efficiency of 82.2% at 1064 nm leading to severe cell death and remarkable tumor growth inhibition in vivo. These prominent intelligent TME‐responsive features of AuNCs@SiO2 may open up a new avenue to explore optical regulated nano‐platform for intelligent, accurate, and noninvasive theranostics in NIR‐II window.
Abstract-Angiotensin II stimulates fibroblast proliferation and substantially alters gene expression patterns leading to cardiac remodeling, but the mechanisms for such differences are unknown. MicroRNAs are a novel mechanism for gene expression regulation. Herein, we tested the miRNA and mRNA expression patterns in mouse heart using microarray assay and investigated their role in angiotensin II-induced cardiac remodeling. We found that let-7i was dynamically downregulated in angiotensin II-infused heart at day 3 and 7 and had the most targets that were mainly associated with cardiac inflammation and fibrosis. Overexpression or knockdown of let-7i in cultured cardiac fibroblasts demonstrated that let-7i played an inhibitory effect on the expression of its targets interleukin-6 and collagens. Furthermore, delivery of let-7i to mouse significantly inhibited angiotensin II-induced cardiac inflammation and fibrosis in a dose-dependent manner. Conversely, knockdown of let-7i aggravated this effect. Together, our results clearly demonstrate that let-7i acts as a novel negative regulator of angiotensin II-induced cardiac inflammation and fibrosis by suppressing the expression of interleukin-6 and multiple collagens in the heart and may represent a new potential therapeutic target for treating hypertensive cardiac fibrosis. (Hypertension. 2015;66:776-785.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.