STING functions as both an adaptor protein signaling cytoplasmic double-stranded DNA and a direct immunosensor of cyclic diguanylate monophosphate (c-di-GMP). The crystal structures of the C-terminal domain of human STING (STING(CTD)) and its complex with c-di-GMP reveal how STING recognizes c-di-GMP. In response to c-di-GMP binding, two surface loops, which serve as a gate and latch of the cleft formed by the dimeric STING(CTD), undergo rearrangements to interact with the ligand.
Pectate lyases (PL) play a critical role in pectin degradation. PL have been extensively studied in major bacterial and fungal pathogens of a wide range of plant species. However, the contribution of PL to infection by oomycete pathogens remains largely unknown. Here, we cloned 22 full-length pectate lyase (PcPL) genes from a highly aggressive strain of Phytophthora capsici SD33. Of these, PVX agroinfiltration revealed that 12 PcPL genes were found to be highly induced during infection of pepper by SD33 but the induction level was twofold less in a mildly aggressive strain, YN07. The four genes with the highest transcript levels as measured by by quantitative reverse-transcription polymerase chain reaction (PcPL1, PcPL15, PcPL16, and PcPL20) also produced a severe cell death response following transient expression in pepper leaves but the other eight PcPL genes did not. Overexpression of these four genes increased the virulence of SD33 on pepper slightly, and increased it more substantially during infection of tobacco. Overexpression of the genes in YN07 restored its aggressiveness to near that of SD33. Gene silencing experiments with the 12 PcPL genes produced diverse patterns of silencing of PcPL genes, from which it could be inferred from regression analysis that PcPL1, PcPL16, and PcPL20 could account for nearly all of the contributions of the PcPL genes to virulence.
Tse1 (Tse is type VI secretion exported), an effector protein produced by Pseudomonas aeruginosa, is an amidase that hydrolyses the γ-D-glutamyl-DAP (γ-D-glutamyl-L-meso-diaminopimelic acid) linkage of the peptide bridge of peptidoglycan. P. aeruginosa injects Tse1 into the periplasm of recipient cells, degrading their peptidoglycan, thereby helping itself to compete with other bacteria. Meanwhile, to protect itself from injury by Tse1, P. aeruginosa expresses the cognate immunity protein Tsi1 (Tsi is type VI secretion immunity) in its own periplasm to inactivate Tse1. In the present paper, we report the crystal structures of Tse1 and the Tse1-(6-148)-Tsi1-(20-end) complex at 1.4 Å and 1.6 Å (1 Å=0.1 nm) resolutions respectively. The Tse1 structure adopts a classical papain-like α+β fold. A cysteine-histidine catalytic diad is identified in the reaction centre of Tse1 by structural comparison and mutagenesis studies. Tsi1 binds Tse1 tightly. The HI loop (middle finger tip) from Tsi1 inserts into the large pocket of the Y-shaped groove on the surface of Tse1, and CD, EF, JK and LM loops (thumb, index finger, ring finger and little finger tips) interact with Tse1, thus blocking the binding of enzyme to peptidoglycan. The catalytic and inhibition mechanisms provide new insights into how P. aeruginosa competes with others and protects itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.