In recent years, impressive advances in harvesting renewable energy have led to a pressing demand for the complimentary energy storage technology. Here, a high Coulombic efficiency (∼99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analog electrolyte made from a mixture of AlCl 3 and urea in a 1.3:1 molar ratio. The battery displays discharge voltage plateaus around 1.9 and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ∼73 mAh g −1 at a current density of 100 mA g −1 (∼1.4 C). High Coulombic efficiency over a range of charge-discharge rates and stability over ∼150-200 cycles was easily demonstrated. In situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite (positive electrode) during charge-discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. + cations. This battery is a promising prospect for a future high-performance, low-cost energy storage device.aluminum-ion battery | urea electrolyte | ionicity | ionic liquid | energy storage C heap, high-rate (fast charge/discharge) rechargeable batteries with long cycle lives are urgently needed for grid-scale storage of renewable energy, as it is becoming increasingly important to replace fossil fuels (1). Lithium-ion batteries (LIBs) are expensive and have limited cycle life, which makes them nonideal for grid-scale energy storage. Furthermore, high-rate capability is necessary for use in the grid, under which conditions LIBs become increasingly unsafe due to the flammability of the electrolytes used. Batteries based on aluminum offer a viable alternative due to aluminum's three-electron redox properties (offers potential for high-capacity batteries), stability in the metallic state, and very high natural abundance. Furthermore, the development of these batteries based on nonflammable electrolytes of low toxicity is critical for minimizing safety hazard and environmental impact. Recently, our group developed a secondary Al battery system based on the reversible deposition/stripping of aluminum at the Al negative electrode and reversible intercalation/deintercalation of chloroaluminate anions at the graphite positive electrode in a nonflammable 1-ethyl-3-methylimidazolium chloroaluminate (EMIC-AlCl 3 ) IL electrolyte (7,8). A ratio of AlCl 3 /EMIC = 1.3 by mole was used such that Al 2 Cl 7 − was present in the (acidic) electrolyte to facilitate aluminum deposition (9). During charging, Al 2 Cl 7 − is reduced to deposit aluminum metal, and AlCl 4 − ions intercalate (to maintain neutrality) in graphite as carbon is oxidized. During discharge, this battery exhibited a cathode specific capacity of ∼70 mAh g −1 with a Coulombic efficiency (CE) of 97-98%, and ultrahigh charge/discharge rate (up to 5,000 mA g −1 ) for over 7,000 cycles. However, room for improvement exists as the parameter space for the Al battery remains largely unexplored. The three-electron redox properti...
Recently, interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. Here, an aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of ∼110 mAh g−1 with Coulombic efficiency ∼98%, at a current density of 99 mA g−1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60 mAh g−1 at 6 C, over 6,000 cycles with Coulombic efficiency ∼ 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Finally, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.
A 3D graphitic foam vertically aligned graphitic structure and a low density of defects is derived through chloroaluminate anion intercalation of graphite followed by thermal expansion and electrochemical hydrogen evolution. Such aligned graphitic structure affords excellent Al-ion battery characteristics with a discharge capacity of ≈60 mA h g under a high charge and discharge current density of 12 000 mA g over ≈4000 cycles.
We investigated rechargeable aluminum (Al) batteries composed of an Al negative electrode, a graphite positive electrode, and an ionic liquid (IL) electrolyte at temperatures down to -40 °C. The reversible battery discharge capacity at low temperatures could be superior to that at room temperature. In situ/operando electrochemical and synchrotron X-ray diffraction experiments combined with theoretical modeling revealed stable AlCl/graphite intercalation up to stage 3 at low temperatures, whereas intercalation was reversible up to stage 4 at room temperature (RT). The higher-degree anion/graphite intercalation at low temperatures affords rechargeable Al battery with higher discharge voltage (up to 2.5 V, a record for Al battery) and energy density. A remarkable cycle life of >20,000 cycles at a rate of 6C (10 minutes charge time) was achievable for Al battery operating at low temperatures, corresponding to a >50-year battery life if charged/discharged once daily.
Type-II quantum dots (QDs) were applied for QDs-sensitized solar cells for the first time and showed prominent absorbed photon to current conversion efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.