We have shown previously that the ADP- ribosylation factor (ARF)-6 GTPase localizes to the plasma membrane and intracellular endosomal compartments. Expression of ARF6 mutants perturbs endosomal trafficking and the morphology of the peripheral membrane system. However, another study on the distribution of ARF6 in subcellular fractions of Chinese hamster ovary (CHO) cells suggested that ARF6 did not localize to endosomes labeled after 10 min of horseradish peroxidase (HRP) uptake, but instead was uniquely localized to the plasma membrane, and that its reported endosomal localization may have been a result of overexpression. Here we demonstrate that at the lowest detectable levels of protein expression by cryoimmunogold electron microscopy, ARF6 localized predominantly to an intracellular compartment at the pericentriolar region of the cell. The ARF6-labeled vesicles were partially accessible to HRP only on prolonged exposure to the endocytic tracer but did not localize to early endocytic structures that labeled with HRP shortly after uptake. Furthermore, we have shown that the ARF6-containing intracellular compartment partially colocalized with transferrin receptors and cellubrevin and morphologically resembled the recycling endocytic compartment previously described in CHO cells. HRP labeling in cells expressing ARF6(Q67L), a GTP-bound mutant of ARF6, was restricted to small peripheral vesicles, whereas the mutant protein was enriched on plasma membrane invaginations. On the other hand, expression of ARF6(T27N), a mutant of ARF6 defective in GDP binding, resulted in an accumulation of perinuclear ARF6-positive vesicles that partially colocalized with HRP on prolonged exposure to the tracer. Taken together, our findings suggest that ARF activation is required for the targeted delivery of ARF6-positive, recycling endosomal vesicles to the plasma membrane.
The rab6 protein (rab6p) belongs to a large family of ras-like low-molecular-mass GTP-binding proteins thought to be involved in the regulation of intracellular transport in mammalian cells. When expressed in the baculovirus/insect cell system, two major forms of rab6p are obtained; a 24-kDa cytosolic unprocessed form and a 23-kDa membrane-bound form which represents the processed lipid-modified protein. Here, we have purified both forms to homogeneity and we have studied and compared their biochemical properties. Unprocessed and processed rab6p display similar bindingrate constants (k,,") for GDP and GTP (2-1.9 pM-' min-'). However, significant differences exist in the dissociation constants of bound guanine nucleotides. Processed rab6p in low and high magnesium solutions displays similar koff values for GTP and GDP. However, unprocessed rab6p has a ken, value higher for GDP than for GTP in both low and high magnesium solutions. Their intrinsic GTPase activities also differ ; unprocessed rab6p has an almost undetectable GTPase activity, whereas that of processed rab6p is in the same range as that reported for other ras and ras-like GTPbinding proteins (0.012 % 0.002 min-'). These results suggest that post-translational modifications of rab6p might induce subtle changes in the three-dimensional structure of the protein which affect the guanine-nucleotide-binding/hydrolysis activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.