A screen was designed to identify temperature-sensitive mutants of Saccharomyces cerevisiae, whose transcription of both ribosomal RNA and ribosomal protein genes is repressed at the nonpermissive temperature. The gene from one such mutant was cloned by complementation. The gene encodes a predicted product that is nearly 65% identical to the human GTPase, Rab6, and is likely to be identical to the yeast gene YPT6. It is essential for growth only at elevated temperatures. The mutant strain is partially defective in the maturation of the vacuolar protein carboxypeptidase Y, as well as in the secretion of invertase, which accumulates as a core-glycosylated form characteristic of the endoplasmic reticulum or the cis-Golgi, suggesting that Ypt6p is involved in an early step of the secretory pathway, earlier than that reported for the mammalian Rab6. The mutant protein, a truncation at codon 64 of 215, has a stronger phenotype than the null allele of YPT6. Four other mutants selected for defective ribosome synthesis at the nonpermissive temperature were also found to have defects in carboxypeptidase Y maturation, giving emphasis to our previous finding that a functional secretory pathway is essential for continued ribosome synthesis. Cloning of extragenic suppressors of the ts allele of YPT6 has revealed two additional proteins that influence the secretory pathway: Ssd1p, a suppressor of many mutations, and Imh1p, which bears some homology to the C-terminal portion of the cytoskeletal proteins integrin and myosin.